ﻻ يوجد ملخص باللغة العربية
We conduct a rigorous investigation into the thermodynamic instability of ideal Bose gas confined in a cubic box, without assuming thermodynamic limit nor continuous approximation. Based on the exact expression of canonical partition function, we perform numerical computations up to the number of particles one million. We report that if the number of particles is equal to or greater than a certain critical value, which turns out to be 7616, the ideal Bose gas subject to Dirichlet boundary condition reveals a thermodynamic instability. Accordingly we demonstrate - for the first time - that, a system consisting of finite number of particles can exhibit a discontinuous phase transition featuring a genuine mathematical singularity, provided we keep not volume but pressure constant. The specific number, 7616 can be regarded as a characteristic number of cube that is the geometric shape of the box.
In current experiments with cold quantum gases in periodic potentials, interference fringe contrast is typically the easiest signal in which to look for effects of non-trivial many-body dynamics. In order better to calibrate such measurements, we ana
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im
We present a microscopic theory of the second order phase transition in an interacting Bose gas that allows one to describe formation of an ordered condensate phase from a disordered phase across an entire critical region continuously. We derive the
Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a
We consider an ideal Bose gas contained in a cylinder in three spatial dimensions, subjected to a uniform gravitational field. It has been claimed by some authors that there is discrepancy between the semi-classical and quantum calculations in the th