ترغب بنشر مسار تعليمي؟ اضغط هنا

A kilonova from an ultra-quick merger of a neutron star binary

359   0   0.0 ( 0 )
 نشر من قبل Zhiping Jin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GRB 060505 was the first well-known nearby (at redshift 0.089) hybrid gamma-ray burst that has a duration longer than 2 seconds but without the association of a supernova down to very stringent limits. The prompt $gamma-$ray flash lasting $sim 4$ sec could consist of an intrinsic short burst and its tail emission, but the sizable temporal lag ($sim 0.35$ sec) as well as the environment properties led to the widely-accepted classification of a long duration gamma-ray burst originated from the collapse of a massive star. Here for the $ first$ time we report the convincing evidence for a thermal-like optical radiation component in the spectral energy distribution of the early afterglow emission. In comparison to AT2017gfo, the thermal radiation is $sim 2$ times brighter and the temperature is comparable at similar epochs. The optical decline is much quicker than that in X-rays, which is also at odds with the fireball afterglow model but quite natural for the presence of a blue kilonova. Our finding reveals a neutron star merger origin of the hybrid GRB 060505 and strongly supports the theoretical speculation that some binary neutron stars can merge ultra-quickly (within $sim 1$ Myr) after their formation when the surrounding region is still highly star-forming and the metallicity remains low. Gravitational wave and electromagnetic jointed observations are expected to confirm such scenarios in the near future.



قيم البحث

اقرأ أيضاً

The merger of two neutron stars has been predicted to produce an optical-infrared transient (lasting a few days) known as a kilonova, powered by the radioactive decay of neutron-rich species synthesized in the merger. Evidence that short gamma-ray bu rsts also arise from neutron-star mergers has been accumulating. In models of such mergers a small amount of mass ($10^{-4}$-$10^{-2}$ solar masses) with a low electron fraction is ejected at high velocities (0.1-0.3 times light speed) and/or carried out by winds from an accretion disk formed around the newly merged object. This mass is expected to undergo rapid neutron capture (r-process) nucleosynthesis, leading to the formation of radioactive elements that release energy as they decay, powering an electromagnetic transient. A large uncertainty in the composition of the newly synthesized material leads to various expected colours, durations and luminosities for such transients. Observational evidence for kilonovae has so far been inconclusive as it was based on cases of moderate excess emission detected in the afterglows of gamma-ray bursts. Here we report optical to near-infrared observations of a transient coincident with the detection of the gravitational-wave signature of a binary neutron-star merger and of a low-luminosity short-duration gamma-ray burst. Our observations, taken roughly every eight hours over a few days following the gravitational-wave trigger, reveal an initial blue excess, with fast optical fading and reddening. Using numerical models, we conclude that our data are broadly consistent with a light curve powered by a few hundredths of a solar mass of low-opacity material corresponding to lanthanide-poor (a fraction of $10^{-4.5}$ by mass) ejecta.
137 - E. Troja , G. Ryan , L. Piro 2018
The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nea rby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagne tic observations of the binary neutron star merger GW170817 gave invaluable insights into these cataclysmic collisions, probing bulk nuclear matter at supranuclear densities, the jet structure of gamma-ray bursts, the speed of gravity, and the cosmological evolution of the local Universe, among other things. Despite the wealth of information, it is still unclear when the remnant of GW170817 collapsed to form a black hole. Evidence from other short gamma-ray bursts indicates a large fraction of mergers may form long-lived neutron stars. We review what is known observationally and theoretically about binary neutron star post-merger remnants. From a theoretical perspective, we review our understanding of the evolution of short- and long-lived merger remnants, including fluid, magnetic-field, and temperature evolution. These considerations impact prospects of detection of gravitational waves from either short- or long-lived neutron star remnants which potentially allows for new probes into the hot nuclear equation of state in conditions inaccessible in terrestrial experiments. We also review prospects for determining post-merger physics from current and future electromagnetic observations, including kilonovae and late-time x-ray and radio afterglow observations.
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
The binary neutron-star (BNS) merger GW170817 is the first celestial object from which both gravitational waves (GWs) and light have been detected enabling critical insight on the pre-merger (GWs) and post-merger (light) physical properties of these phenomena. For the first $sim 3$ years after the merger the detected radio and X-ray radiation has been dominated by emission from a structured relativistic jet initially pointing $sim 15-25$ degrees away from our line of sight and propagating into a low-density medium. Here we report on observational evidence for the emergence of a new X-ray emission component at $delta t>900$ days after the merger. The new component has luminosity $L_x approx 5times 10^{38}rm{erg s^{-1}}$ at 1234 days, and represents a $sim 3.5sigma$ - $4.3sigma$ excess compared to the expectations from the off-axis jet model that best fits the multi-wavelength afterglow of GW170817 at earlier times. A lack of detectable radio emission at 3 GHz around the same time suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with synchrotron emission from a mildly relativistic shock generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this context our simulations show that the X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. However, radiation from accretion processes on the compact-object remnant represents a viable alternative to the kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission have been observed before.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا