ﻻ يوجد ملخص باللغة العربية
The recent discovery of a faint gamma-ray burst (GRB) coincident with the gravitational wave (GW) event GW 170817 revealed the existence of a population of low-luminosity short duration gamma-ray transients produced by neutron star mergers in the nearby Universe. These events could be routinely detected by existing gamma-ray monitors, yet previous observations failed to identify them without the aid of GW triggers. Here we show that GRB150101B was an analogue of GRB170817A located at a cosmological distance. GRB 150101B was a faint short duration GRB characterized by a bright optical counterpart and a long-lived X-ray afterglow. These properties are unusual for standard short GRBs and are instead consistent with an explosion viewed off-axis: the optical light is produced by a luminous kilonova component, while the observed X-rays trace the GRB afterglow viewed at an angle of ~13 degrees. Our findings suggest that these properties could be common among future electromagnetic counterparts of GW sources.
GRB 060505 was the first well-known nearby (at redshift 0.089) hybrid gamma-ray burst that has a duration longer than 2 seconds but without the association of a supernova down to very stringent limits. The prompt $gamma-$ray flash lasting $sim 4$ sec
In light of the most recent observations of late afterglows produced by the merger of compact objects or by the core-collapse of massive dying stars, we research the evolution of the afterglow produced by an off-axis top-hat jet and its interaction w
CDF-S XT1 is a fast-rising non-thermal X-ray transient detected by textit{Chandra} in the Deep-Field South Survey. Although various hypotheses have been suggested, the origin of this transient remains unclear. Here, we show that the observations of C
We review current understanding of kilonova/macronova emission from compact binary mergers (mergers of two neutron stars or a neutron star and a black hole). Kilonova/macronova is optical and near-infrared emission powered by radioactive decays of r-
The binary neutron star merger event GW170817 was detected through both electromagnetic radiation and gravitational waves. Its afterglow emission may have been produced by either a narrow relativistic jet or an isotropic outflow. High spatial resolut