ﻻ يوجد ملخص باللغة العربية
Although the main features of the evolution of binary neutron star systems are now well established, many details are still subject to debate, especially regarding the post-merger phase. In particular, the lifetime of the hyper-massive neutron stars formed after the merger is very hard to predict. In this work, we provide a simple analytic relation for the lifetime of the merger remnant as function of the initial mass of the neutron stars. This relation results from a joint fit of data from observational evidence and from various numerical simulations. In this way, a large range of collapse times, physical effects and equation of states is covered. Finally, we apply the relation to the gravitational wave event GW170817 to constrain the equation of state of dense matter.
The main features of the gravitational dynamics of binary neutron star systems are now well established. While the inspiral can be precisely described in the post-Newtonian approximation, fully relativistic magneto-hydrodynamical simulations are requ
Two neutron stars merge somewhere in the Universe approximately every 10 seconds, creating violent explosions observable in gravitational waves and across the electromagnetic spectrum. The transformative coincident gravitational-wave and electromagne
Binary neutron star mergers offer a new and independent means of measuring the Hubble constant $H_0$ by combining the gravitational-wave inferred source luminosity distance with its redshift obtained from electromagnetic follow-up. This method is lim
We report the discovery and initial follow-up of a double neutron star (DNS) system, PSR J1946$+$2052, with the Arecibo L-Band Feed Array pulsar (PALFA) survey. PSR J1946$+$2052 is a 17-ms pulsar in a 1.88-hour, eccentric ($e , =, 0.06$) orbit with a