ﻻ يوجد ملخص باللغة العربية
Deformable Monocular SLAM algorithms recover the localization of a camera in an unknown deformable environment. Current approaches use a template-based deformable tracking to recover the camera pose and the deformation of the map. These template-based methods use an underlying global deformation model. In this paper, we introduce a novel deformable camera tracking method with a local deformation model for each point. Each map point is defined as a single textured surfel that moves independently of the other map points. Thanks to a direct photometric error cost function, we can track the position and orientation of the surfel without an explicit global deformation model. In our experiments, we validate the proposed system and observe that our local deformation model estimates more accurately and robustly the targeted deformations of the map in both laboratory-controlled experiments and in-body scenarios undergoing non-isometric deformations, with changing topology or discontinuities.
The tracking-by-detection framework receives growing attentions through the integration with the Convolutional Neural Networks (CNNs). Existing tracking-by-detection based methods, however, fail to track objects with severe appearance variations. Thi
Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. I
Conventional SLAM techniques strongly rely on scene rigidity to solve data association, ignoring dynamic parts of the scene. In this work we present Semi-Direct DefSLAM (SD-DefSLAM), a novel monocular deformable SLAM method able to map highly deformi
Tracking of multiple objects is an important application in AI City geared towards solving salient problems related to safety and congestion in an urban environment. Frequent occlusion in traffic surveillance has been a major problem in this research
Scene graph generation (SGG) is to detect entity pairs with their relations in an image. Existing SGG approaches often use multi-stage pipelines to decompose this task into object detection, relation graph construction, and dense or dense-to-sparse r