ﻻ يوجد ملخص باللغة العربية
Siamese-based trackers have achieved excellent performance on visual object tracking. However, the target template is not updated online, and the features of the target template and search image are computed independently in a Siamese architecture. In this paper, we propose Deformable Siamese Attention Networks, referred to as SiamAttn, by introducing a new Siamese attention mechanism that computes deformable self-attention and cross-attention. The self attention learns strong context information via spatial attention, and selectively emphasizes interdependent channel-wise features with channel attention. The cross-attention is capable of aggregating rich contextual inter-dependencies between the target template and the search image, providing an implicit manner to adaptively update the target template. In addition, we design a region refinement module that computes depth-wise cross correlations between the attentional features for more accurate tracking. We conduct experiments on six benchmarks, where our method achieves new state of-the-art results, outperforming the strong baseline, SiamRPN++ [24], by 0.464->0.537 and 0.415->0.470 EAO on VOT 2016 and 2018. Our code is available at: https://github.com/msight-tech/research-siamattn.
The current Siamese network based on region proposal network (RPN) has attracted great attention in visual tracking due to its excellent accuracy and high efficiency. However, the design of the RPN involves the selection of the number, scale, and asp
Recently spiking neural networks (SNNs), the third-generation of neural networks has shown remarkable capabilities of energy-efficient computing, which is a promising alternative for deep neural networks (DNNs) with high energy consumption. SNNs have
Most of the existing trackers usually rely on either a multi-scale searching scheme or pre-defined anchor boxes to accurately estimate the scale and aspect ratio of a target. Unfortunately, they typically call for tedious and heuristic configurations
In this paper, we focus on improving online multi-object tracking (MOT). In particular, we introduce a region-based Siamese Multi-Object Tracking network, which we name SiamMOT. SiamMOT includes a motion model that estimates the instances movement be
Visual tracking plays an important role in perception system, which is a crucial part of intelligent transportation. Recently, Siamese network is a hot topic for visual tracking to estimate moving targets trajectory, due to its superior accuracy and