ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-powered InP Nanowire Photodetector for Single Photon Level Detection at Room Temperature

409   0   0.0 ( 0 )
 نشر من قبل Vidur Raj (Ph.D.)
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Highly sensitive photodetectors with single photon level detection is one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most of the single-photon detection technologies require external biasing at high voltages and/or cooling to low temperatures, posing great limitations for wider applications. Here, we demonstrate InP nanowire array photodetectors that can achieve single-photon level light detection at room temperature without an external bias. We use top-down etched, heavily doped p-type InP nanowires and n-type AZO/ZnO carrier selective contact to form a radial p-n junction with a built-in electric field exceeding 3x10^5 V/cm at 0 V. The device exhibits broadband light sensitivity and can distinguish a single photon per pulse from the dark noise at 0 V, enabled by its design to realize near-ideal broadband absorption, extremely low dark current, and highly efficient charge carrier separation. Meanwhile, the bandwidth of the device reaches above 600 MHz with a timing jitter of 538 ps. The proposed device design provides a new pathway towards low-cost, high-sensitivity, self-powered photodetectors for numerous future applications.



قيم البحث

اقرأ أيضاً

A single photon source with high repeatability and low uncertainties is the key element for few-photon metrology based on photon numbers. While low photon number fluctuations and high repeatability are important figures for qualification as a standar d light source, these characteristics are limited in single photon emitters by some malicious phenomena like blinking or internal relaxations to varying degrees in different materials. This study seeks to characterize photon number fluctuations and repeatability for radiometry applications at room temperature. For generality in this study, we collected photon statistics data with various single photon emitters of $g^{(2)}(0) < 1$ at low excitation power and room temperature in three material platforms: silicon vacancy in diamond, defects in GaN, and vacancy in hBN. We found common factors related with the relaxation times of the internal states that indirectly affect photon number stability. We observed a high stability of photon number with defects in GaN due to faster relaxations compared with vacancies in hBN, which on the other hand produced high rates ($> 10^6$) of photons per second. Finally, we demonstrate repeatable radiant flux measurements of a bright hBN single photon emitter for a wide radiant flux range from a few tens of femtowatts to one picowatt.
We investigate the nonlinear optical response of a commercial extended-wavelength In$_{0.81}$Ga$_{0.19}$As photodetector. Degenerate two-photon absorption in the mid-infrared range is observed at room temperature using a quantum cascade laser emittin g at $lambda=4.5~mu$m as the excitation source. From the measured two-photon photocurrent signal we extract a two-photon absorption coefficient $beta^{(2)} = 0.6 pm 0.2$ cm/MW, in agreement with the theoretical value obtained from the $E_g^{-3}$ scaling law. Considering the wide spectral range covered by extended-wavelength In$_x$Ga$_{1-x}$As alloys, this result holds promise for new applications based on two-photon absorption for this family of materials at wavelengths between 1.8 and 5.6 $mu$m.
On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently-exploited integrated OAM sources have been primarily limited to th e classical regime. Herein, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) = 0.22, carrying entangled spin and orbital angular momentum states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon sources bridge the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for information processing.
642 - Hao Li , Lu Zhang , Lixing You 2015
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo nic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.
127 - Lixing You , Jia Quan , yong Wang 2017
Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past ex perimental demonstrations have had ground-based applications. In this work we demonstrate a SNSPD system using a hybrid cryocooler compatible with space applications. With a minimum operational temperature of 2.8 K, this SNSPD system presents a maximum system detection efficiency of over 50% and a timing jitter of 48 ps, which paves the way for various space applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا