ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting nanowire single photon detection system for space applications

128   0   0.0 ( 0 )
 نشر من قبل Lixing You
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting nanowire single photon detectors (SNSPDs) have advanced various frontier scientific and technological fields such as quantum key distribution and deep space communications. However, limited by available cooling technology, all past experimental demonstrations have had ground-based applications. In this work we demonstrate a SNSPD system using a hybrid cryocooler compatible with space applications. With a minimum operational temperature of 2.8 K, this SNSPD system presents a maximum system detection efficiency of over 50% and a timing jitter of 48 ps, which paves the way for various space applications.



قيم البحث

اقرأ أيضاً

83 - Lixing You 2020
The superconducting nanowire single-photon detector (SNSPD) is a quantum-limit superconducting optical detector based on the Cooper-pair breaking effect by a single photon, which exhibits a higher detection efficiency, lower dark count rate, higher c ounting rate, and lower timing jitter when compared with those exhibited by its counterparts. SNSPDs have been extensively applied in quantum information processing, including quantum key distribution and optical quantum computation. In this review, we present the requirements of single-photon detectors from quantum information, as well as the principle, key metrics, latest performance issues and other issues associated with SNSPD. The representative applications of SNSPDs with respect to quantum information will also be covered.
642 - Hao Li , Lu Zhang , Lixing You 2015
Satellite-ground quantum communication requires single-photon detectors of 850-nm wavelength with both high detection efficiency and large sensitive area. We developed superconducting nanowire single-photon detectors (SNSPDs) on one-dimensional photo nic crystals, which acted as optical cavities to enhance the optical absorption, with a sensitive-area diameter of 50 um. The fabricated multimode fiber coupled NbN SNSPDs exhibited a maximum system detection efficiency (DE) of up to 82% and a DE of 78% at a dark count rate of 100 Hz at 850-nm wavelength as well as a system jitter of 105 ps.
Superconducting nanowire single-photon detectors have emerged as a promising technology for quantum metrology from the mid-infrared to ultra-violet frequencies. Despite the recent experimental successes, a predictive model to describe the detection e vent in these detectors is needed to optimize the detection metrics. Here, we propose a probabilistic criterion for single-photon detection based on single-vortex (flux quanta) crossing the width of the nanowire. Our model makes a connection between the dark-counts and photon-counts near the detection threshold. The finite-difference calculations demonstrate that a change in the bias current distribution as a result of the photon absorption significantly increases the probability of single-vortex crossing even if the vortex potential barrier has not vanished completely. We estimate the instrument response function and show that the timing uncertainty of this vortex tunneling process corresponds to a fundamental limit in timing jitter of the click event. We demonstrate a trade-space between this intrinsic (quantum) timing jitter, quantum efficiency, and dark count rate in TaN, WSi, and NbN superconducting nanowires at different experimental conditions. Our detection model can also explain the experimental observation of exponential decrease in the quantum efficiency of SNSPDs at lower energies. This leads to a pulse-width dependency in the quantum efficiency, and it can be further used as an experimental test to compare across different detection models.
To analyze the switching dynamics and output performance of a superconducting nanowire single photon detector (SNSPD), the nanowire is usually modelled as an inductor in series with a time-varying resistor induced by absorption of a photon. Our recen t experimental results show that, due to the effect of kinetic inductance, for a SNSPD made of a nanowire of sufficient length, its geometry length can be comparable to or even longer than the effective wavelength of frequencies contained in the output pulse. In other words, a superconducting nanowire can behave as a distributed transmission line so that the readout pulse depends on the photon detection location and the transmission line properties of the nanowire. Here, we develop a distributed model for a superconducting nanowire and apply it to simulate the output performance of a long nanowire designed into a coplanar waveguide. We compare this coplanar waveguide geometry to a conventional meander nanowire geometry. The simulation results agree well with our experimental observations. With this distributed model, we discussed the importance of microwave design of a nanowire and how impedance matching can affect the output pulse shape. We also discuss how the distributed model affects the growth and decay of the photon-triggered resistive hotspot.
An abnormal increase in the SDE was observed for superconducting nanowire single-photon detectors (SNSPDs) when the bias current (Ib) was close to the switching current (Isw). By introducing the time-correlated single-photon counting technique, we in vestigated the temporal histogram of the detection counts of an SNSPD under illumination. The temporal information helps us to distinguish photon counts from dark counts in the time domain. In this manner, the dark count rate (DCR) under illumination and the accurate SDE can be determined. The DCR under moderate illumination may be significantly larger than the conventional DCR measured without illumination under a high Ib, which causes the abnormal increase in the SDE. The increased DCR may be explained by the suppression of Isw under illumination.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا