ﻻ يوجد ملخص باللغة العربية
We investigate the nonlinear optical response of a commercial extended-wavelength In$_{0.81}$Ga$_{0.19}$As photodetector. Degenerate two-photon absorption in the mid-infrared range is observed at room temperature using a quantum cascade laser emitting at $lambda=4.5~mu$m as the excitation source. From the measured two-photon photocurrent signal we extract a two-photon absorption coefficient $beta^{(2)} = 0.6 pm 0.2$ cm/MW, in agreement with the theoretical value obtained from the $E_g^{-3}$ scaling law. Considering the wide spectral range covered by extended-wavelength In$_x$Ga$_{1-x}$As alloys, this result holds promise for new applications based on two-photon absorption for this family of materials at wavelengths between 1.8 and 5.6 $mu$m.
High speed mid-wave infrared (MWIR) photodetectors have important applications in the emerging areas such high-precision frequency comb spectroscopy and light detection and ranging (LIDAR). In this work, we report a high-speed room-temperature mid-wa
Highly sensitive photodetectors with single photon level detection is one of the key components to a range of emerging technologies, in particular the ever-growing field of optical communication, remote sensing, and quantum computing. Currently, most
We exploited graphene nanoribbons based meta-surface to realize coherent perfect absorption (CPA) in the mid-infrared regime. It was shown that quasi-CPA frequencies, at which CPA can be demonstrated with proper phase modulations, exist for the graph
Black phosphorus (BP), an emerging two-dimensional (2D) material with intriguing optical properties, forms a promising building block in optics and photonics devices. In this work, we propose a simple structure composed of BP sandwiched by polymer an
We designed and simulated freestanding dielectric optical metasurfaces based on arrays of etched nanoholes in a silicon membrane. We showed $2pi$ phase control and high forward transmission at mid-infrared wavelengths by tuning the dimensions of the