ﻻ يوجد ملخص باللغة العربية
The paper begins with a review of the well known Novikovs equations and corresponding finite KdV hierarchies. For a positive integer $N$ we give an explicit description of the $N$-th Novikovs equation and its first integrals. Its finite KdV hierarchy consists of $N$ compatible integrable polynomial dynamical systems in $mathbb{C}^{2N}$. Then we discuss a non-commutative version of the $N$-th Novikovs equation defined on a finitely generated free associative algebra $mathfrak{B}_N$ with $2N$ generators. In $mathfrak{B}_N$, for $N=1,2,3,4$, we have found two-sided homogeneous ideals $mathfrak{Q}_Nsubsetmathfrak{B}_N$ (quantisation ideals) which are invariant with respect to the $N$-th Novikovs equation and such that the quotient algebra $mathfrak{C}_N = mathfrak{B}_Ndiagup mathfrak{Q}_N$ has a well defined Poincare-Birkhoff-Witt basis. It enables us to define the quantum $N$-th Novikovs equation on the $mathfrak{C}_N$. We have shown that the quantum $N$-th Novikovs equation and its finite hierarchy can be written in the standard Heisenberg form.
The equations of Loewner type can be derived in two very different contexts: one of them is complex analysis and the theory of parametric conformal maps and the other one is the theory of integrable systems. In this paper we compare the both approach
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el
This is a short review of the Kadomtsev-Petviashvili hierarchies of types B and C. The main objects are the $L$-operator, the wave operator, the auxiliary linear problems for the wave function, the bilinear identity for the wave function and the tau-
This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and
For each of the simple Lie algebras $mathfrak{g}=A_l$, $D_l$ or $E_6$, we show that the all-genera one-point FJRW invariants of $mathfrak{g}$-type, after multiplication by suitable products of Pochhammer symbols, are the coefficients of an algebraic