ترغب بنشر مسار تعليمي؟ اضغط هنا

Tau function and Virasoro action for the nxn KdV hierarchy

570   0   0.0 ( 0 )
 نشر من قبل Chuu-Lian Terng
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This is the third in a series of papers attempting to describe a uniform geometric framework in which many integrable systems can be placed. A soliton hierarchy can be constructed from a splitting of an infinite dimensional group $L$ as positive and negative subgroups L_+, L_- and a commuting sequence in the Lie algebra of L_+. Given f in L_-, there is a formal inverse scattering solution u_f of the hierarchy. When there is a 2 co-cycle that vanishes on both subalgebras of L_+ and L_-, Wilson constructed for each f in L_- a tau function tau_f for the hierarchy. In this third paper, we prove the following results for the nxn KdV hierarchy: (1) The second partials of ln(tau_f) are differential polynomials of the formal inverse scattering solution u_f. Moreover, u_f can be recovered from the second partials of ln(tau_f). (2) The natural Virasoro action on ln(tau_f) constructed in the second paper is given by partial differential operators in ln(tau_f). (3) There is a bijection between phase spaces of the nxn KdV hierarchy and the Gelfand-Dickey (GD_n) hierarchy on the space of order n linear differential operators on the line so that the flows in these two hierarchies correspond under the bijection. (4) Our Virasoro action on the nxn KdV hierarchy is constructed from a simple Virasoro action on the negative group. We show that it corresponds to the known Virasoro action on the GD_n hierarchy under the bijection.



قيم البحث

اقرأ أيضاً

225 - Liming Ling , Xuan Sun 2021
We study the spectral (linear) stability and orbital (nonlinear) stability of the elliptic solutions for the focusing modified Korteweg-de Vries (mKdV) equation with respect to subharmonic perturbations and construct the corresponding breather soluti ons to exhibit the unstable or stable dynamic behavior. The elliptic function solutions of mKdV equation and the fundamental solutions of Lax pair are exactly represented by using the theta function. Based on the `modified squared wavefunction (MSW) method, we construct all linear independent solutions of the linearized KdV equation, and then provide a necessary and sufficient condition of the spectral stability for the elliptic function solutions with respect to subharmonic perturbations. In the case of spectrum stable, the orbital stability of the elliptic function solutions with respect to subharmonic perturbations is established under a suitable Hilbert space. Using Darboux-Backlund transformation, we construct the breather solutions to exhibit the unstable or stable dynamic behavior. Through analyzing the asymptotical behavior, we find the breather solution under the $mathrm{cn}$-background is equivalent to the elliptic function solution adding a small perturbation as $ttopminfty$.
We derive a Lagrangian based approach to study the compatible Hamiltonian structure of the dispersionless KdV and supersymmetric KdV hierarchies and claim that our treatment of the problem serves as a very useful supplement of the so-called r-matrix method. We suggest specific ways to construct results for conserved densities and Hamiltonian operators. The Lagrangian formulation, via Noethers theorem, provides a method to make the relation between symmetries and conserved quantities more precise. We have exploited this fact to study the variational symmetries of the dispersionless KdV equation.
Using matrix model, Mironov and Morozov recently gave a formula which represents Kontsevich-Witten tau-function as a linear expansion of Schur Q-polynomials. In this paper, we will show directly that the Q-polynomial expansion in this formula satisfi es the Virasoro constraints, and consequently obtain a proof of this formula without using matrix model. We also give a proof for Alexandrovs conjecture that Kontsevich-Witten tau-function is a hypergeometric tau-function of the BKP hierarchy after re-scaling.
The paper begins with a review of the well known Novikovs equations and corresponding finite KdV hierarchies. For a positive integer $N$ we give an explicit description of the $N$-th Novikovs equation and its first integrals. Its finite KdV hierarchy consists of $N$ compatible integrable polynomial dynamical systems in $mathbb{C}^{2N}$. Then we discuss a non-commutative version of the $N$-th Novikovs equation defined on a finitely generated free associative algebra $mathfrak{B}_N$ with $2N$ generators. In $mathfrak{B}_N$, for $N=1,2,3,4$, we have found two-sided homogeneous ideals $mathfrak{Q}_Nsubsetmathfrak{B}_N$ (quantisation ideals) which are invariant with respect to the $N$-th Novikovs equation and such that the quotient algebra $mathfrak{C}_N = mathfrak{B}_Ndiagup mathfrak{Q}_N$ has a well defined Poincare-Birkhoff-Witt basis. It enables us to define the quantum $N$-th Novikovs equation on the $mathfrak{C}_N$. We have shown that the quantum $N$-th Novikovs equation and its finite hierarchy can be written in the standard Heisenberg form.
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el liptic $N$-soliton solutions for higher order KdV equations is the same as that of the original KdV equation. Pointing out that the difference is only the time dependence, we find $N$-soliton solutions of higher order KdV equations can be constructed from those of the original KdV equation by properly replacing the time-dependence. We discuss that there always exist elliptic solutions for all higher order KdV equations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا