ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry and arithmetic of integrable hierarchies of KdV type. I. Integrality

83   0   0.0 ( 0 )
 نشر من قبل Di Yang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For each of the simple Lie algebras $mathfrak{g}=A_l$, $D_l$ or $E_6$, we show that the all-genera one-point FJRW invariants of $mathfrak{g}$-type, after multiplication by suitable products of Pochhammer symbols, are the coefficients of an algebraic generating function and hence are integral. Moreover, we find that the all-genera invariants themselves coincide with the coefficients of the unique calibration of the Frobenius manifold of $mathfrak{g}$-type evaluated at a special point. For the $A_4$ (5-spin) case we also find two other normalizations of the sequence that are again integral and of at most exponential growth, and hence conjecturally are the Taylor coefficients of some period functions.



قيم البحث

اقرأ أيضاً

We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a set of commuting additional symmetries, we construct solutions of the Witten--Dijkgraaf--E. Verlinde--H. Verlinde equations.
The paper begins with a review of the well known Novikovs equations and corresponding finite KdV hierarchies. For a positive integer $N$ we give an explicit description of the $N$-th Novikovs equation and its first integrals. Its finite KdV hierarchy consists of $N$ compatible integrable polynomial dynamical systems in $mathbb{C}^{2N}$. Then we discuss a non-commutative version of the $N$-th Novikovs equation defined on a finitely generated free associative algebra $mathfrak{B}_N$ with $2N$ generators. In $mathfrak{B}_N$, for $N=1,2,3,4$, we have found two-sided homogeneous ideals $mathfrak{Q}_Nsubsetmathfrak{B}_N$ (quantisation ideals) which are invariant with respect to the $N$-th Novikovs equation and such that the quotient algebra $mathfrak{C}_N = mathfrak{B}_Ndiagup mathfrak{Q}_N$ has a well defined Poincare-Birkhoff-Witt basis. It enables us to define the quantum $N$-th Novikovs equation on the $mathfrak{C}_N$. We have shown that the quantum $N$-th Novikovs equation and its finite hierarchy can be written in the standard Heisenberg form.
Paraconformal or $GL(2)$ geometry on an $n$-dimensional manifold $M$ is defined by a field of rational normal curves of degree $n-1$ in the projectivised cotangent bundle $mathbb{P} T^*M$. Such geometry is known to arise on solution spaces of ODEs wi th vanishing Wunschmann (Doubrov-Wilczynski) invariants. In this paper we discuss yet another natural source of $GL(2)$ structures, namely dispersionless integrable hierarchies of PDEs (for instance the dKP hierarchy). In the latter context, $GL(2)$ structures coincide with the characteristic variety (principal symbol) of the hierarchy. Dispersionless hierarchies provide explicit examples of various particularly interesting classes of $GL(2)$ structures studied in the literature. Thus, we obtain torsion-free $GL(2)$ structures of Bryant that appeared in the context of exotic holonomy in dimension four, as well as totally geodesic $GL(2)$ structures of Krynski. The latter, also known as involutive $GL(2)$ structures, possess a compatible affine connection (with torsion) and a two-parameter family of totally geodesic $alpha$-manifolds (coming from the dispersionless Lax equations), which makes them a natural generalisation of the Einstein-Weyl geometry. Our main result states that involutive $GL(2)$ structures are governed by a dispersionless integrable system. This establishes integrability of the system of Wunschmann conditions.
297 - Jungkai A. Chen , Meng Chen 2009
Let $V$ be a complex nonsingular projective 3-fold of general type. We prove $P_{12}(V):=text{dim} H^0(V, 12K_V)>0$ and $P_{m_0}(V)>1$ for some positive integer $m_0leq 24$. A direct consequence is the birationality of the pluricanonical map $varphi_ m$ for all $mgeq 126$. Besides, the canonical volume $text{Vol}(V)$ has a universal lower bound $ u(3)geq frac{1}{63cdot 126^2}$.
This is the text of a series of five lectures given by the author at the Second Annual Spring Institute on Noncommutative Geometry and Operator Algebras held at Vanderbilt University in May 2004. It is meant as an overview of recent results illustrat ing the interplay between noncommutative geometry and arithmetic geometry/number theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا