ﻻ يوجد ملخص باللغة العربية
In this paper we reconsider the original Kolmogorov normal form algorithm with a variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach, we do not keep the frequencies fixed along the normalization procedure. Besides we select the frequencies of the final invariant torus and determine a posteriori the corresponding starting one. In particular, we replace the classical translation step with a change of the frequencies. The algorithm is based on classical expansion in a small parameter and particular attention is paid to the constructive aspect: we produce an explicit algorithm that can be effectively applied, e.g., with the aid of an algebraic manipulator, and that we prove to be absolutely convergent.
This is part II of our book on KAM theory. We start by defining functorial analysis and then switch to the particular case of Kolmogorov spaces. We develop functional calculus based on the notion of local operators. This allows to define the exponent
We study a class of elliptic operators $A$ with unbounded coefficients defined in $ItimesCR^d$ for some unbounded interval $IsubsetCR$. We prove that, for any $sin I$, the Cauchy problem $u(s,cdot)=fin C_b(CR^d)$ for the parabolic equation $D_tu=Au$
We generalize the Kolmogorov continuity theorem and prove the continuity of a class of stochastic fields with the parameter. As an application, we derive the continuity of solutions for nonlocal stochastic parabolic equations driven by non-Gaussian L{e}vy noises.
Particles suspended in a fluid exert feedback forces that can significantly impact the flow, altering the turbulent drag and velocity fluctuations. We study flow modulation induced by particles heavier than the carrier fluid in the framework of an Eu
Kolmogorov complexity is the length of the ultimately compressed version of a file (that is, anything which can be put in a computer). Formally, it is the length of a shortest program from which the file can be reconstructed. We discuss the incomputa