ﻻ يوجد ملخص باللغة العربية
Particles suspended in a fluid exert feedback forces that can significantly impact the flow, altering the turbulent drag and velocity fluctuations. We study flow modulation induced by particles heavier than the carrier fluid in the framework of an Eulerian two-way coupled model, where particles are represented by a continuum density transported by a compressible velocity field, exchanging momentum with the fluid phase. We implement the model in direct numerical simulations of the turbulent Kolmogorov flow, a simplified setting allowing for studying the momentum balance and the turbulent drag in the absence of boundaries. We show that the amplitude of the mean flow and the turbulence intensity are reduced by increasing particle mass loading with the consequent enhancement of the friction coefficient. Surprisingly, turbulence suppression is stronger for particles of smaller inertia. We understand such a result by mapping the equations for dusty flow, in the limit of vanishing inertia, to a Newtonian flow with an effective forcing reduced by the increase in fluid density due to the presence of particles. We also discuss the negative feedback produced by turbophoresis which mitigates the effects of particles, especially with larger inertia, on the turbulent flow.
In a recent paper, Liu, Zhu and Wu (2015, {it J. Fluid Mech.} {bf 784}: 304) present a force theory for a body in a two-dimensional, viscous, compressible and steady flow. In this companion paper we do the same for three-dimensional flow. Using the f
Previous studies on nonspherical particle-fluid interaction were mostly confined to elongated fiber-like particles, which were observed to induce turbulence drag reduction. However, with the presence of tiny disk-like particles how wall turbulence is
Efficiently predicting the flowfield and load in aerodynamic shape optimisation remains a highly challenging and relevant task. Deep learning methods have been of particular interest for such problems, due to their success for solving inverse problem
The upper bound of polymer drag reduction is identified as a unique transitional state between laminar and turbulent flow corresponding to the onset of the nonlinear breakdown of flow instabilities.
Unlike a helicopter, an insect can, in theory, use both lift and drag to stay aloft. Here we show that a dragonfly uses mostly drag to hover by employing asymmetric up and down strokes. Computations of a family of strokes further show that using drag