ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonautonomous Kolmogorov parabolic equations with unbounded coefficients

129   0   0.0 ( 0 )
 نشر من قبل Luca Lorenzi
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a class of elliptic operators $A$ with unbounded coefficients defined in $ItimesCR^d$ for some unbounded interval $IsubsetCR$. We prove that, for any $sin I$, the Cauchy problem $u(s,cdot)=fin C_b(CR^d)$ for the parabolic equation $D_tu=Au$ admits a unique bounded classical solution $u$. This allows to associate an evolution family ${G(t,s)}$ with $A$, in a natural way. We study the main properties of this evolution family and prove gradient estimates for the function $G(t,s)f$. Under suitable assumptions, we show that there exists an evolution system of measures for ${G(t,s)}$ and we study the first properties of the extension of $G(t,s)$ to the $L^p$-spaces with respect to such measures.



قيم البحث

اقرأ أيضاً

191 - M. Kunze , L. Lorenzi , A. Rhandi 2013
Using time dependent Lyapunov functions, we prove pointwise upper bounds for the heat kernels of some nonautonomous Kolmogorov operators with possibly unbounded drift and diffusion coefficients.
121 - L. Lorenzi 2009
We consider a class of nonautonomous elliptic operators ${mathscr A}$ with unbounded coefficients defined in $[0,T]timesR^N$ and we prove optimal Schauder estimates for the solution to the parabolic Cauchy problem $D_tu={mathscr A}u+f$, $u(0,cdot)=g$.
We consider a class of nonautonomous second order parabolic equations with unbounded coefficients defined in $ItimesR^d$, where $I$ is a right-halfline. We prove logarithmic Sobolev and Poincare inequalities with respect to an associated evolution sy stem of measures ${mu_t: t in I}$, and we deduce hypercontractivity and asymptotic behaviour results for the evolution operator $G(t,s)$.
We study asymptotic behavior in a class of non-autonomous second order parabolic equations with time periodic unbounded coefficients in $mathbb Rtimes mathbb R^d$. Our results generalize and improve asymptotic behavior results for Markov semigroups h aving an invariant measure. We also study spectral properties of the realization of the parabolic operator $umapsto {cal A}(t) u - u_t$ in suitable $L^p$ spaces.
149 - Hongjie Dong 2008
We prove the $W^{1,2}_{p}$-solvability of second order parabolic equations in nondivergence form in the whole space for $pin (1,infty)$. The leading coefficients are assumed to be measurable in one spatial direction and have vanishing mean oscillatio n (VMO) in the orthogonal directions and the time variable in each small parabolic cylinder with the direction depending on the cylinder. This extends a recent result by Krylov [17] for elliptic equations and removes the restriction that $p>2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا