ﻻ يوجد ملخص باللغة العربية
Biquandle brackets define invariants of classical and virtual knots and links using skein invariants of biquandle-colored knots and links. Biquandle coloring quivers categorify the biquandle counting invariant in the sense of defining quiver-valued enhancements which decategorify to the counting invariant. In this paper we unite the two ideas to define biquandle bracket quivers, providing new categorifications of biquandle brackets. In particular, our construction provides an infinite family of categorifications of the Jones polynomial and other classical skein invariants.
Biquandle brackets are a type of quantum enhancement of the biquandle counting invariant for oriented knots and links, defined by a set of skein relations with coefficients which are functions of biquandle colors at a crossing. In this paper we use b
We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle coun
We enhance the psyquandle counting invariant for singular knots and pseudoknots using quivers analogously to quandle coloring quivers. This enables us to extend the in-degree polynomial invariants from quandle coloring quiver theory to the case of si
Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant kn
It is known that the number of biquandle colorings of a long virtual knot diagram, with a fixed color of the initial arc, is a knot invariant. In this paper we describe a more subtle invariant: a family of biquandle endomorphisms obtained from the set of colorings and longitudinal information.