ترغب بنشر مسار تعليمي؟ اضغط هنا

Quandle Coloring Quivers of Surface-Links

120   0   0.0 ( 0 )
 نشر من قبل Sam Nelson
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Quandle coloring quivers are directed graph-valued invariants of oriented knots and links, defined using a choice of finite quandle $X$ and set $Ssubsetmathrm{Hom}(X,X)$ of endomorphisms. From a quandle coloring quiver, a polynomial knot invariant known as the textit{in-degree quiver polynomial} is defined. We consider quandle coloring quiver invariants for oriented surface-links, represented by marked graph diagrams. We provide example computations for all oriented surface-links with ch-index up to 10 for choices of quandles and endomorphisms.



قيم البحث

اقرأ أيضاً

We enhance the quandle coloring quiver invariant of oriented knots and links with quandle modules. This results in a two-variable polynomial invariant with specializes to the previous quandle module polynomial invariant as well as to the quandle coun ting invariant. We provide example computations to show that the enhancement is proper in the sense that it distinguishes knots and links with the same quandle module polynomial.
We enhance the psyquandle counting invariant for singular knots and pseudoknots using quivers analogously to quandle coloring quivers. This enables us to extend the in-degree polynomial invariants from quandle coloring quiver theory to the case of si ngular knots and pseudoknots. As a side effect we obtain biquandle coloring quivers and in-degree polynomial invariants for classical and virtual knots and links.
252 - J. Scott Carter 2004
This paper is a brief overview of some of our recent results in collaboration with other authors. The cocycle invariants of classical knots and knotted surfaces are summarized, and some applications are presented.
94 - J. Scott Carter 2003
Three new knot invariants are defined using cocycles of the generalized quandle homology theory that was proposed by Andruskiewitsch and Gra~na. We specialize that theory to the case when there is a group action on the coefficients. First, quandle modules are used to generalize Burau representations and Alexander modules for classical knots. Second, 2-cocycles valued in non-abelian groups are used in a way similar to Hopf algebra invariants of classical knots. These invariants are shown to be of quantum type. Third, cocycles with group actions on coefficient groups are used to define quandle cocycle invariants for both classical knots and knotted surfaces. Concrete computational methods are provided and used to prove non-invertibility for a large family of knotted surfaces. In the classical case, the invariant can detect the chirality of 3-colorable knots in a number of cases.
Biquandle brackets define invariants of classical and virtual knots and links using skein invariants of biquandle-colored knots and links. Biquandle coloring quivers categorify the biquandle counting invariant in the sense of defining quiver-valued e nhancements which decategorify to the counting invariant. In this paper we unite the two ideas to define biquandle bracket quivers, providing new categorifications of biquandle brackets. In particular, our construction provides an infinite family of categorifications of the Jones polynomial and other classical skein invariants.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا