ﻻ يوجد ملخص باللغة العربية
Biquandle brackets are a type of quantum enhancement of the biquandle counting invariant for oriented knots and links, defined by a set of skein relations with coefficients which are functions of biquandle colors at a crossing. In this paper we use biquandle brackets to enhance the biquandle counting matrix invariant defined by the first two authors in arXiv:1803.11308. We provide examples to illustrate the method of calcuation and to show that the new invariants are stronger than the previous ones.
Biquandle brackets define invariants of classical and virtual knots and links using skein invariants of biquandle-colored knots and links. Biquandle coloring quivers categorify the biquandle counting invariant in the sense of defining quiver-valued e
In this paper, we construct quantum invariants for knotoid diagrams in $mathbb{R}^2$. The diagrams are arranged with respect to a given direction in the plane ({it Morse knotoids}). A Morse knotoid diagram can be decomposed into basic elementary diag
By using double branched covers, we prove that there is a 1-1 correspondence between the set of knotoids in the 2-sphere, up to orientation reversion and rotation, and knots with a strong inversion, up to conjugacy. This correspondence allows us to s
We extend the theory of Vassiliev (or finite type) invariants for knots to knotoids using two different approaches. Firstly, we take closures on knotoids to obtain knots and we use the Vassiliev invariants for knots, proving that these are knotoid is
We introduce textit{Kaestner brackets}, a generalization of biquandle brackets to the case of parity biquandles. This infinite set of quantum enhancements of the biquandle counting invariant for oriented virtual knots and links includes the classical