ترغب بنشر مسار تعليمي؟ اضغط هنا

When Two Worlds Collide: Using Particle Physics Tools to Visualize the Limit Order Book

157   0   0.0 ( 0 )
 نشر من قبل Stephan Hageboeck
 تاريخ النشر 2021
  مجال البحث مالية فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a methodology to visualize the limit order book (LOB) using a particle physics lens. Open-source data-analysis tool ROOT, developed by CERN, is used to reconstruct and visualize futures markets. Message-based data is used, rather than snapshots, as it offers numerous visualization advantages. The visualization method can include multiple variables and markets simultaneously and is not necessarily time dependent. Stakeholders can use it to visualize high-velocity data to gain a better understanding of markets or effectively monitor markets. In addition, the method is easily adjustable to user specifications to examine various LOB research topics, thereby complementing existing methods.



قيم البحث

اقرأ أيضاً

We analyze the cosmological signatures visible to an observer in a Coleman-de Luccia bubble when another such bubble collides with it. We use a gluing procedure to generalize the results of Freivogel, Horowitz, and Shenker to the case of a general co smological constant in each bubble and study the resulting spacetimes. The collision breaks the isotropy and homogeneity of the bubble universe and provides a cosmological axis of evil which can affect the cosmic microwave background in several unique and potentially detectable ways. Unlike more conventional perturbations to the inflationary initial state, these signatures can survive even relatively long periods of inflation. In addition, we find that for a given collision the observers in the bubble with smaller cosmological constant are safest from collisions with domain walls, possibly providing another anthropic selection principle for small positive vacuum energy.
We present an empirical study of the intertwined behaviour of members in a financial market. Exploiting a database where the broker that initiates an order book event can be identified, we decompose the correlation and response functions into contrib utions coming from different market participants and study how their behaviour is interconnected. We find evidence that (1) brokers are very heterogeneous in liquidity provision -- some are consistently liquidity providers while others are consistently liquidity takers. (2) The behaviour of brokers is strongly conditioned on the actions of {it other} brokers. In contrast brokers are only weakly influenced by the impact of their own previous orders. (3) The total impact of market orders is the result of a subtle compensation between the same broker pushing the price in one direction and the liquidity provision of other brokers pushing it in the opposite direction. These results enforce the picture of market dynamics being the result of the competition between heterogeneous participants interacting to form a complicated market ecology.
Machine learning (especially reinforcement learning) methods for trading are increasingly reliant on simulation for agent training and testing. Furthermore, simulation is important for validation of hand-coded trading strategies and for testing hypot heses about market structure. A challenge, however, concerns the robustness of policies validated in simulation because the simulations lack fidelity. In fact, researchers have shown that many market simulation approaches fail to reproduce statistics and stylized facts seen in real markets. As a step towards addressing this we surveyed the literature to collect a set of reference metrics and applied them to real market data and simulation output. Our paper provides a comprehensive catalog of these metrics including mathematical formulations where appropriate. Our results show that there are still significant discrepancies between simulated markets and real ones. However, this work serves as a benchmark against which we can measure future improvement.
We examine the dynamics of the bid and ask queues of a limit order book and their relationship with the intensity of trade arrivals. In particular, we study the probability of price movements and trade arrivals as a function of the quote imbalance at the top of the limit order book. We propose a stochastic model in an attempt to capture the joint dynamics of the top of the book queues and the trading process, and describe a semi-analytic approach to calculate the relative probability of market events. We calibrate the model using historical market data and discuss the quality of fit and practical applications of the results.
263 - Hai-Chuan Xu 2016
In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large ord ers. However, the evolutionary behavior of LOB resilience around liquidity shocks is not well understood empirically. Using order flow data sets of Chinese stocks, we quantify and compare the LOB dynamics characterized by the bid-ask spread, the LOB depth and the order intensity surrounding effective market orders with different aggressiveness. We find that traders are more likely to submit effective market orders when the spreads are relatively low, the same-side depth is high, and the opposite-side depth is low. Such phenomenon is especially significant when the initial spread is 1 tick. Although the resiliency patterns show obvious diversity after different types of market orders, the spread and depth can return to the sample average within 20 best limit updates. The price resiliency behavior is dominant after aggressive market orders, while the price continuation behavior is dominant after less-aggressive market orders. Moreover, the effective market orders produce asymmetrical stimulus to limit orders when the initial spreads equal to 1 tick. Under this case, effective buy market orders attract more buy limit orders and effective sell market orders attract more sell limit orders. The resiliency behavior of spread and depth is linked to limit order intensity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا