ﻻ يوجد ملخص باللغة العربية
In order-driven markets, limit-order book (LOB) resiliency is an important microscopic indicator of market quality when the order book is hit by a liquidity shock and plays an essential role in the design of optimal submission strategies of large orders. However, the evolutionary behavior of LOB resilience around liquidity shocks is not well understood empirically. Using order flow data sets of Chinese stocks, we quantify and compare the LOB dynamics characterized by the bid-ask spread, the LOB depth and the order intensity surrounding effective market orders with different aggressiveness. We find that traders are more likely to submit effective market orders when the spreads are relatively low, the same-side depth is high, and the opposite-side depth is low. Such phenomenon is especially significant when the initial spread is 1 tick. Although the resiliency patterns show obvious diversity after different types of market orders, the spread and depth can return to the sample average within 20 best limit updates. The price resiliency behavior is dominant after aggressive market orders, while the price continuation behavior is dominant after less-aggressive market orders. Moreover, the effective market orders produce asymmetrical stimulus to limit orders when the initial spreads equal to 1 tick. Under this case, effective buy market orders attract more buy limit orders and effective sell market orders attract more sell limit orders. The resiliency behavior of spread and depth is linked to limit order intensity.
We study the analytical properties of a one-side order book model in which the flows of limit and market orders are Poisson processes and the distribution of lifetimes of cancelled orders is exponential. Although simplistic, the model provides an ana
Machine learning (especially reinforcement learning) methods for trading are increasingly reliant on simulation for agent training and testing. Furthermore, simulation is important for validation of hand-coded trading strategies and for testing hypot
It has been suggested that marked point processes might be good candidates for the modelling of financial high-frequency data. A special class of point processes, Hawkes processes, has been the subject of various investigations in the financial commu
We examine the dynamics of the bid and ask queues of a limit order book and their relationship with the intensity of trade arrivals. In particular, we study the probability of price movements and trade arrivals as a function of the quote imbalance at
We model the behavior of three agent classes acting dynamically in a limit order book of a financial asset. Namely, we consider market makers (MM), high-frequency trading (HFT) firms, and institutional brokers (IB). Given a prior dynamic of the order