ﻻ يوجد ملخص باللغة العربية
We analyze the cosmological signatures visible to an observer in a Coleman-de Luccia bubble when another such bubble collides with it. We use a gluing procedure to generalize the results of Freivogel, Horowitz, and Shenker to the case of a general cosmological constant in each bubble and study the resulting spacetimes. The collision breaks the isotropy and homogeneity of the bubble universe and provides a cosmological axis of evil which can affect the cosmic microwave background in several unique and potentially detectable ways. Unlike more conventional perturbations to the inflationary initial state, these signatures can survive even relatively long periods of inflation. In addition, we find that for a given collision the observers in the bubble with smaller cosmological constant are safest from collisions with domain walls, possibly providing another anthropic selection principle for small positive vacuum energy.
When two stars collide and merge they form a new star that can stand out against the background population in a starcluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually for
We extend our previous work on the cosmology of Coleman-de Luccia bubble collisions. Within a set of approximations we calculate the effects on the cosmic microwave background (CMB) as seen from inside a bubble which has undergone such a collision. W
We introduce a methodology to visualize the limit order book (LOB) using a particle physics lens. Open-source data-analysis tool ROOT, developed by CERN, is used to reconstruct and visualize futures markets. Message-based data is used, rather than sn
We study a recently proposed scenario for the early universe: Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed
In self-tuning brane-world models with extra dimensions, large contributions to the cosmological constant are absorbed into the curvature of extra dimensions and consistent with flat 4d geometry. In models with conventional Lagrangians fine-tuning is