ﻻ يوجد ملخص باللغة العربية
Entanglement is the fuel of advanced quantum technology. It is for instance consumed in measurement-based quantum computing and allows loss-tolerant encoding of quantum information. In photonics, entanglement has traditionally been generated probabilistically, requiring massive multiplexing for scaling up to many photons. An alternative approach utilizes quantum emitters in nanophotonic devices for deterministic generation of single photons, which an be extended to two- and multi-photon generation on demand. The proposed polarization-entanglement sources are, however, incompatible with spatial dual-rail qubit encoding, which is preferred in photonic quantum computing realized in scalable integrated photonic circuits. Here we propose and experimentally realize an on-demand source of dual-rail photon pairs using a quantum dot in a planar nanophotonic waveguide. The source exploits the cascaded decay of a biexciton state and chiral light-matter coupling to achieve deterministic generation of spatial dual-rail Bell pairs with the amount of entanglement determined by the chirality. The operational principle can readily be extended to multi-photon entanglement generation, and such sources may be interfaced with advanced photonic-integrated circuits, e.g., for efficient preparation of entanglement resource states for photonic quantum computing.
Planar nanostructures allow near-ideal extraction of emission from a quantum emitter embedded within, thereby realizing deterministic single-photon sources. Such a source can be transformed into M single-photon sources by implementing active temporal
Optical waveguides in the form of glass fibers are the backbone of global telecommunication networks. In such optical fibers, the light is guided over long distances by continuous total internal reflection which occurs at the interface between the fi
We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to acci
We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of
We perform full time resolved tomographic measurements of the polarization state of pairs of photons emitted during the radiative cascade of the confined biexciton in a semiconductor quantum dot. The biexciton was deterministically initiated using a