ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of polarization-entangled photon pairs in a Bragg reflection waveguide

192   0   0.0 ( 0 )
 نشر من قبل Adam Valles Mr.
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.



قيم البحث

اقرأ أيضاً

We demonstrate the first 1550 nm correlated photon-pair source in an integrated glass platform-a chalcogenide As2S3 waveguide. A measured pair coincidence rate of 80 per second was achieved using 57 mW of continuous-wave pump. The coincidence to acci dental ratio was shown to be limited by spontaneous Raman scattering effects that are expected to be mitigated by using a pulsed pump source.
143 - H. Chen , K. Laiho , B. Pressl 2018
Bragg-reflection waveguides (BRWs) fabricated from AlGaAs provide an interesting non-linear optical platform for photon-pair generation via parametric down-conversion (PDC). In contrast to many conventional PDC sources, BRWs are made of high refracti ve index materials and their characteristics are very sensitive to the underlying layer structure. First, we show that the design parameters like the phasematching wavelength and the group refractive indices of the interacting modes can be reliably controlled even in the presence of fabrication tolerances. We then investigate, how these characteristics can be taken advantage of when designing quantum photonic applications with BRWs. We especially concentrate on achieving a small differential group delay between the generated photons of a pair and then explore the performance of our design when realizing a Hong-Ou-Mandel interference experiment or generating spectrally multi-band polarization entangled states. Our results show that the versatility provided by engineering the dispersion in BRWs is important for employing them in different quantum optics tasks.
Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.
80 - Y. Nambu , K. Usami , Y. Tsuda 2002
We report the generation of polarization-entangled photons by femtosecond-pulse-pumped spontaneous parametric down-conversion in a cascade of two type-I crystals. Highly entangled pulsed states were obtained by introducing a temporal delay between th e two orthogonal polarization components of the pump field. They exhibited high-visibility quantum interference and a large concurrence value, without the need of post-selection using narrow-bandwidth-spectral filters. The results are well explained by the theory which incorporates the space-time dependence of interfering two-photon amplitudes if dispersion and birefringence in the crystals are appropriately taken into account. Such a pulsed entangled photon well localized in time domain is useful for various quantum communication experiments, such as quantum cryptography and quantum teleportation.
We study the generation of correlated photon pairs via spontaneous four wave mixing in a 15 cm long micro/nano-fiber (MNF). The MNF is properly fabricated to satisfy the phase matching condition for generating the signal and idler photon pairs at the wavelengths of about 1310 and 851 nm, respectively. Photon counting measurements yield a coincidence-to-accidental ratio of 530 for a photon production rate of about 0.002 (0.0005) per pulse in the signal (idler) band. We also analyze the spectral information of the signal photons originated from the spontaneous four wave mixing and Raman scattering. In addition to discovering some unique feature of Raman scattering, we find the bandwidth of the individual signal photons is much greater than the calculated value for the MNF with homogeneous structure. Our investigations indicate the MNF is a promising candidate for developing the sources of nonclassical light and the spectral property of photon pairs can be used to non-invasively test the diameter and homogeneity of the MNF.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا