ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient demultiplexed single-photon source with a quantum dot coupled to a nanophotonic waveguide

82   0   0.0 ( 0 )
 نشر من قبل Ravitej Uppu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Thomas Hummel




اسأل ChatGPT حول البحث

Planar nanostructures allow near-ideal extraction of emission from a quantum emitter embedded within, thereby realizing deterministic single-photon sources. Such a source can be transformed into M single-photon sources by implementing active temporal-to-spatial mode demultiplexing. We report on the realization of such a demultiplexed source based on a quantum dot embedded in a nanophotonic waveguide. Efficient outcoupling (>60%) from the waveguide into a single mode optical fiber is obtained with high-efficiency grating couplers. As a proof-of-concept, active demultiplexing into M=4 spatial channels is demonstrated by the use of electro-optic modulators with an end-to-end efficiency of >81% into single-mode fibers. Overall we demonstrate four-photon coincidence rates of >1 Hz even under non-resonant excitation of the quantum dot. The main limitation of the current source is the residual population of other exciton transitions that corresponds to a finite preparation efficiency of the desired transition. We quantitatively extract a preparation efficiency of 15% using the second-order correlation function measurements. The experiment highlights the applicability of planar nanostructures as efficient multiphoton sources through temporal-to-spatial demultiplexing and lays out a clear path way of how to scale up towards demonstrating quantum advantages with the quantum dot sources.



قيم البحث

اقرأ أيضاً

168 - A. Javadi , I. Sollner , M. Arcari 2015
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quan tum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created . Here we show that a single quantum dot in a photonic-crystal waveguide can be utilized as a giant nonlinearity sensitive at the single-photon level. The nonlinear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon-photon bound state. The quantum nonlinearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
We study the dynamics of a single photon pulse travels through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single photon pulse with finite bandwidth can even approach $100%$. The spectrum of the reflected and transmitted photon can also be significantly different from the single atom case. Many interesting physical phenomena can occur in this system such as the photonic bandgap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single photon frequency filter, single photon modulation and may find important applications in quantum information.
Entanglement is the fuel of advanced quantum technology. It is for instance consumed in measurement-based quantum computing and allows loss-tolerant encoding of quantum information. In photonics, entanglement has traditionally been generated probabil istically, requiring massive multiplexing for scaling up to many photons. An alternative approach utilizes quantum emitters in nanophotonic devices for deterministic generation of single photons, which an be extended to two- and multi-photon generation on demand. The proposed polarization-entanglement sources are, however, incompatible with spatial dual-rail qubit encoding, which is preferred in photonic quantum computing realized in scalable integrated photonic circuits. Here we propose and experimentally realize an on-demand source of dual-rail photon pairs using a quantum dot in a planar nanophotonic waveguide. The source exploits the cascaded decay of a biexciton state and chiral light-matter coupling to achieve deterministic generation of spatial dual-rail Bell pairs with the amount of entanglement determined by the chirality. The operational principle can readily be extended to multi-photon entanglement generation, and such sources may be interfaced with advanced photonic-integrated circuits, e.g., for efficient preparation of entanglement resource states for photonic quantum computing.
We demonstrate a quantum dot single photon source at 900 nm triggered at 300 MHz by a continuous wave telecommunications wavelength laser followed by an electro-optic modulator. The quantum dot is excited by on-chip-generated second harmonic radiatio n, resonantly enhanced by a GaAs photonic crystal cavity surrounding the InAs quantum dot. Our result suggests a path toward the realization of telecommunications-wavelength-compatible quantum dot single photon sources with speeds exceeding 1 GHz.
We theoretically investigate the quantum scattering of a single-photon pulse interacting with an ensemble of $Lambda$-type three-level atoms coupled to a one-dimensional waveguide. With an effective non-Hermitian Hamiltonian, we study the collective interaction between the atoms mediated by the waveguide mode. In our scheme, the atoms are randomly placed in the lattice along the axis of the one-dimensional waveguide, which closely corresponds to the practical condition that the atomic positions can not be controlled precisely in experiment. Many interesting optical properties occur in our waveguide-atom system, such as electromagnetically induced transparency (EIT) and optical depth. Moreover, we observe that strong photon-photon correlation with quantum beats can be generated in the off-resonant case, which provides an effective candidate for producing non-classical light in experiment. With remarkable progress in waveguide-emitter system, our scheme may be feasible in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا