ﻻ يوجد ملخص باللغة العربية
All AI models are susceptible to learning biases in data that they are trained on. For generative dialogue models, being trained on real human conversations containing unbalanced gender and race/ethnicity references can lead to models that display learned biases, which we define here broadly as any measurable differences in the distributions of words or semantic content of conversations based on demographic groups. We measure the strength of such biases by producing artificial conversations between two copies of a dialogue model, conditioning one conversational partner to state a name commonly associated with a certain gender and/or race/ethnicity. We find that larger capacity models tend to exhibit more gender bias and greater stereotyping of occupations by gender. We show that several methods of tuning these dialogue models, specifically name scrambling, controlled generation, and unlikelihood training, are effective in reducing bias in conversation, including on a downstream conversational task. Name scrambling is also effective in lowering differences in token usage across conversations where partners have names associated with different genders or races/ethnicities.
The open domain-dialogue system Alquist has a goal to conduct a coherent and engaging conversation that can be considered as one of the benchmarks of social intelligence. The fourth version of the system, developed within the Alexa Prize Socialbot Gr
This paper treats gender bias latent in word embeddings. Previous mitigation attempts rely on the operationalisation of gender bias as a projection over a linear subspace. An alternative approach is Counterfactual Data Augmentation (CDA), in which a
This paper is concerned with the form of typed name binding used by the FreshML family of languages. Its characteristic feature is that a name binding is represented by an abstract (name,value)-pair that may only be deconstructed via the generation o
Pre-trained language models have achieved human-level performance on many Machine Reading Comprehension (MRC) tasks, but it remains unclear whether these models truly understand language or answer questions by exploiting statistical biases in dataset
Predicting the next utterance in dialogue is contingent on encoding of users input text to generate appropriate and relevant response in data-driven approaches. Although the semantic and syntactic quality of the language generated is evaluated, more