ﻻ يوجد ملخص باللغة العربية
The open domain-dialogue system Alquist has a goal to conduct a coherent and engaging conversation that can be considered as one of the benchmarks of social intelligence. The fourth version of the system, developed within the Alexa Prize Socialbot Grand Challenge 4, brings two main innovations. The first addresses coherence, and the second addresses the engagingness of the conversation. For innovations regarding coherence, we propose a novel hybrid approach combining hand-designed responses and a generative model. The proposed approach utilizes hand-designed dialogues, out-of-domain detection, and a neural response generator. Hand-designed dialogues walk the user through high-quality conversational flows. The out-of-domain detection recognizes that the user diverges from the predefined flow and prevents the system from producing a scripted response that might not make sense for unexpected user input. Finally, the neural response generator generates a response based on the context of the dialogue that correctly reacts to the unexpected user input and returns the dialogue to the boundaries of hand-designed dialogues. The innovations for engagement that we propose are mostly inspired by the famous exploration-exploitation dilemma. To conduct an engaging conversation with the dialogue partners, one has to learn their preferences and interests -- exploration. Moreover, to engage the partner, we have to utilize the knowledge we have already learned -- exploitation. In this work, we present the principles and inner workings of individual components of the open-domain dialogue system Alquist developed within the Alexa Prize Socialbot Grand Challenge 4 and the experiments we have conducted to evaluate them.
This paper presents the second version of the dialogue system named Alquist competing in Amazon Alexa Prize 2018. We introduce a system leveraging ontology-based topic structure called topic nodes. Each of the nodes consists of several sub-dialogues,
As machine learning methods are deployed in real-world settings such as healthcare, legal systems, and social science, it is crucial to recognize how they shape social biases and stereotypes in these sensitive decision-making processes. Among such re
Developing intelligent persuasive conversational agents to change peoples opinions and actions for social good is the frontier in advancing the ethical development of automated dialogue systems. To do so, the first step is to understand the intricate
Neural dialogue models have been widely adopted in various chatbot applications because of their good performance in simulating and generalizing human conversations. However, there exists a dark side of these models -- due to the vulnerability of neu
All AI models are susceptible to learning biases in data that they are trained on. For generative dialogue models, being trained on real human conversations containing unbalanced gender and race/ethnicity references can lead to models that display le