ترغب بنشر مسار تعليمي؟ اضغط هنا

Using Adversarial Attacks to Reveal the Statistical Bias in Machine Reading Comprehension Models

78   0   0.0 ( 0 )
 نشر من قبل Jieyu Lin
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pre-trained language models have achieved human-level performance on many Machine Reading Comprehension (MRC) tasks, but it remains unclear whether these models truly understand language or answer questions by exploiting statistical biases in datasets. Here, we demonstrate a simple yet effective method to attack MRC models and reveal the statistical biases in these models. We apply the method to the RACE dataset, for which the answer to each MRC question is selected from 4 options. It is found that several pre-trained language models, including BERT, ALBERT, and RoBERTa, show consistent preference to some options, even when these options are irrelevant to the question. When interfered by these irrelevant options, the performance of MRC models can be reduced from human-level performance to the chance-level performance. Human readers, however, are not clearly affected by these irrelevant options. Finally, we propose an augmented training method that can greatly reduce models statistical biases.



قيم البحث

اقرأ أيضاً

In this paper, we focus on unsupervised domain adaptation for Machine Reading Comprehension (MRC), where the source domain has a large amount of labeled data, while only unlabeled passages are available in the target domain. To this end, we propose a n Adversarial Domain Adaptation framework (AdaMRC), where ($i$) pseudo questions are first generated for unlabeled passages in the target domain, and then ($ii$) a domain classifier is incorporated into an MRC model to predict which domain a given passage-question pair comes from. The classifier and the passage-question encoder are jointly trained using adversarial learning to enforce domain-invariant representation learning. Comprehensive evaluations demonstrate that our approach ($i$) is generalizable to different MRC models and datasets, ($ii$) can be combined with pre-trained large-scale language models (such as ELMo and BERT), and ($iii$) can be extended to semi-supervised learning.
Machine Reading Comprehension (MRC) is an important testbed for evaluating models natural language understanding (NLU) ability. There has been rapid progress in this area, with new models achieving impressive performance on various benchmarks. Howeve r, existing benchmarks only evaluate models on in-domain test sets without considering their robustness under test-time perturbations or adversarial attacks. To fill this important gap, we construct AdvRACE (Adversarial RACE), a new model-agnostic benchmark for evaluating the robustness of MRC models under four different types of adversarial attacks, including our novel distractor extraction and generation attacks. We show that state-of-the-art (SOTA) models are vulnerable to all of these attacks. We conclude that there is substantial room for building more robust MRC models and our benchmark can help motivate and measure progress in this area. We release our data and code at https://github.com/NoviScl/AdvRACE .
Recent studies report that many machine reading comprehension (MRC) models can perform closely to or even better than humans on benchmark datasets. However, existing works indicate that many MRC models may learn shortcuts to outwit these benchmarks, but the performance is unsatisfactory in real-world applications. In this work, we attempt to explore, instead of the expected comprehension skills, why these models learn the shortcuts. Based on the observation that a large portion of questions in current datasets have shortcut solutions, we argue that larger proportion of shortcut questions in training data make models rely on shortcut tricks excessively. To investigate this hypothesis, we carefully design two synthetic datasets with annotations that indicate whether a question can be answered using shortcut solutions. We further propose two new methods to quantitatively analyze the learning difficulty regarding shortcut and challenging questions, and revealing the inherent learning mechanism behind the different performance between the two kinds of questions. A thorough empirical analysis shows that MRC models tend to learn shortcut questions earlier than challenging questions, and the high proportions of shortcut questions in training sets hinder models from exploring the sophisticated reasoning skills in the later stage of training.
In this paper, we introduce Adversarial-and-attention Network (A3Net) for Machine Reading Comprehension. This model extends existing approaches from two perspectives. First, adversarial training is applied to several target variables within the model , rather than only to the inputs or embeddings. We control the norm of adversarial perturbations according to the norm of original target variables, so that we can jointly add perturbations to several target variables during training. As an effective regularization method, adversarial training improves robustness and generalization of our model. Second, we propose a multi-layer attention network utilizing three kinds of high-efficiency attention mechanisms. Multi-layer attention conducts interaction between question and passage within each layer, which contributes to reasonable representation and understanding of the model. Combining these two contributions, we enhance the diversity of dataset and the information extracting ability of the model at the same time. Meanwhile, we construct A3Net for the WebQA dataset. Results show that our model outperforms the state-of-the-art models (improving Fuzzy Score from 73.50% to 77.0%).
Adversarial training (AT) as a regularization method has proved its effectiveness on various tasks. Though there are successful applications of AT on some NLP tasks, the distinguishing characteristics of NLP tasks have not been exploited. In this pap er, we aim to apply AT on machine reading comprehension (MRC) tasks. Furthermore, we adapt AT for MRC tasks by proposing a novel adversarial training method called PQAT that perturbs the embedding matrix instead of word vectors. To differentiate the roles of passages and questions, PQAT uses additional virtual P/Q-embedding matrices to gather the global perturbations of words from passages and questions separately. We test the method on a wide range of MRC tasks, including span-based extractive RC and multiple-choice RC. The results show that adversarial training is effective universally, and PQAT further improves the performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا