ﻻ يوجد ملخص باللغة العربية
Math word problem (MWP) solving is the task of transforming a sequence of natural language problem descriptions to executable math equations. An MWP solver not only needs to understand complex scenarios described in the problem texts, but also identify the key mathematical variables and associate text descriptions with math equation logic. Although recent sequence modeling MWP solvers have gained credits on the math-text contextual understanding, pre-trained language models (PLM) have not been explored for solving MWP, considering that PLM trained over free-form texts is limited in representing text references to mathematical logic. In this work, we introduce MWP-BERT to obtain pre-trained token representations that capture the alignment between text description and mathematical logic. Additionally, we introduce a keyword-based prompt matching method to address the MWPs requiring common-sense knowledge. On a benchmark Math23K dataset and a new Ape210k dataset, we show that MWP-BERT outperforms the strongest baseline model by 5-10% improvement on accuracy.
Math word problem (MWP) is a challenging and critical task in natural language processing. Many recent studies formalize MWP as a generation task and have adopted sequence-to-sequence models to transform problem descriptions to mathematical expressio
We introduce MeSys, a meaning-based approach, for solving English math word problems (MWPs) via understanding and reasoning in this paper. It first analyzes the text, transforms both body and question parts into their corresponding logic forms, and t
We present ASDiv (Academia Sinica Diverse MWP Dataset), a diverse (in terms of both language patterns and problem types) English math word problem (MWP) corpus for evaluating the capability of various MWP solvers. Existing MWP corpora for studying AI
Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver)
A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expressio