ﻻ يوجد ملخص باللغة العربية
We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z~0.67-2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, turbulent disk, and a NFW dark matter halo, using code that fully forward models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I (Genzel et al. 2020): the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of non-circular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z~1-2 are baryon-dominated on galactic scales, with lower dark matter fractions towards higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis.
We report high quality, Halpha or CO rotation curves (RCs) to several Re for 41 large, massive, star-forming disk galaxies (SFGs), across the peak of cosmic galaxy evolution (z~0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFG
We present a observational study of the dark matter fraction in 225 rotation supported star-forming galaxies at $zapprox 0.9$ having stellar mass range: $ 9.0 leq log(M_* mathrm{M_odot}) leq 11.0$ and star formation rate: $0.49 leq log left(SFR mat
The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO guaranteed time survey of 795 typical star-forming galaxies in the redshift range z=0.8-1.0 with the KMOS instrument on the VLT. In this paper we present resolved kinematics and star format
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of appl
Early quiescent galaxies at z~2 are known to be remarkably compact compared to their nearby counterparts. Possible progenitors of these systems include galaxies that are structurally similar, but are still rapidly forming stars. Here, we present Karl