ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation Curves in z~1-2 Star-Forming Disks: Evidence for Cored Dark Matter Distributions

116   0   0.0 ( 0 )
 نشر من قبل Hannah \\\"Ubler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report high quality, Halpha or CO rotation curves (RCs) to several Re for 41 large, massive, star-forming disk galaxies (SFGs), across the peak of cosmic galaxy evolution (z~0.67-2.45), taken with the ESO-VLT, the LBT and IRAM-NOEMA. Most RC41 SFGs have reflection symmetric RCs plausibly described by equilibrium dynamics. We fit the major axis position-velocity cuts with beam-convolved, forward modeling with a bulge, a turbulent rotating disk, and a dark matter (DM) halo. We include priors for stellar and molecular gas masses, optical light effective radii and inclinations, and DM masses from abundance matching scaling relations. Two-thirds or more of the z>1.2 SFGs are baryon dominated within a few Re of typically 5.5 kpc, and have DM fractions less than maximal disks (<fDM (Re)>=0.12). At lower redshift (z<1.2) that fraction is less than one-third. DM fractions correlate inversely with the baryonic angular momentum parameter, baryonic surface density and bulge mass. Inferred low DM fractions cannot apply to the entire disk & halo but more plausibly reflect a flattened, or cored, inner DM density distribution. The typical central DM deficit in these cores relative to NFW distributions is ~30% of the bulge mass. The observations are consistent with rapid radial transport of baryons in the first generation massive gas rich halos forming globally gravitationally unstable disks, and leading to efficient build-up of massive bulges and central black holes. A combination of heating due to dynamical friction and AGN feedback may drive DM out of the initial cusps.



قيم البحث

اقرأ أيضاً

We present a follow-up analysis examining the dynamics and structures of 41 massive, large star-forming galaxies at z~0.67-2.45 using both ionized and molecular gas kinematics. We fit the galaxy dynamics with models consisting of a bulge, a thick, tu rbulent disk, and a NFW dark matter halo, using code that fully forward models the kinematics, including all observational and instrumental effects. We explore the parameter space using Markov Chain Monte Carlo (MCMC) sampling, including priors based on stellar and gas masses and disk sizes. We fit the full sample using extracted 1D kinematic profiles. For a subset of 14 well-resolved galaxies, we also fit the 2D kinematics. The MCMC approach robustly confirms the results from least-squares fitting presented in Paper I (Genzel et al. 2020): the sample galaxies tend to be baryon-rich on galactic scales (within one effective radius). The 1D and 2D MCMC results are also in good agreement for the subset, demonstrating that much of the galaxy dynamical information is captured along the major axis. The 2D kinematics are more affected by the presence of non-circular motions, which we illustrate by constructing a toy model with constant inflow for one galaxy that exhibits residual signatures consistent with radial motions. This analysis, together with results from Paper I and other studies, strengthens the finding that massive, star-forming galaxies at z~1-2 are baryon-dominated on galactic scales, with lower dark matter fractions towards higher baryonic surface densities. Finally, we present details of the kinematic fitting code used in this analysis.
We present a observational study of the dark matter fraction in 225 rotation supported star-forming galaxies at $zapprox 0.9$ having stellar mass range: $ 9.0 leq log(M_* mathrm{M_odot}) leq 11.0$ and star formation rate: $0.49 leq log left(SFR mat hrm{[M_{odot} yr^{-1}]} right) leq 1.77$. This is a sub sample of KMOS redshift one spectroscopic survey (KROSS) previously studied by citet{GS20}. The stellar masses ($M_*$) of these objects were previously estimated using mass-to-light ratios derived from fitting the spectral energy distribution of the galaxies. Star formation rates were derived from the H$_alpha$ luminosities. The total gas masses ($M_{gas}$) are determined by scaling relations of molecular and atomic gas citep[][respectively] {Tacconi2018, Lagos2011}. The dynamical masses ($M_{dyn}$) are directly derived from the rotation curves (RCs) at different scale lengths (effective radius: $R_e$, $sim 2 R_e$ and $sim 3 R_e$) and then the dark matter fractions ($f_{ DM }=1-M_{bar}/M_{dyn}$) at these radii are calculated. We report that at $zsim 1$ only a small fraction ($sim 5%$) of our sample has a low ($< 20%$) DM fraction within $sim$ 2-3 $R_e$. The majority ($> 72%$) of SFGs in our sample have dark matter dominated outer disks ($sim 5-10$ kpc) in agreement with local SFGs. Moreover, we find a large scatter in the fraction of dark matter at a given stellar mass (or circular velocity) with respect to local SFGs, suggesting that galaxies at $z sim 1$, a) span a wide range of stages in the formation of stellar disks, b) have diverse DM halo properties coupled with baryons.
290 - J. J. Dalcanton , A. Stilp 2010
Rotation curves constrain a galaxys underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emis sion lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.
While bright, blue, compact galaxies are common at $rm z sim 1$, they are relatively rare in the local universe, and their evolutionary paths are uncertain. We have obtained resolved H I observations of nine $rm z sim 0$ luminous compact blue galaxie s (LCBGs) using the Giant Metrewave Radio Telescope and Very Large Array in order to measure their kinematic and dynamical properties and better constrain their evolutionary possibilities. We find that the LCBGs in our sample are rotating galaxies that tend to have nearby companions, relatively high central velocity dispersions, and can have disturbed velocity fields. We calculate rotation velocities for each galaxy by measuring half of the velocity gradient along their major axes and correcting for inclination using axis ratios derived from SDSS images of each galaxy. We compare our measurements to those previously made with single dishes and find that single dish measurements tend to overestimate LCBGs rotation velocities and H I masses. We also compare the ratio of LCBGs rotation velocities and velocity dispersions to those of other types of galaxies and find that LCBGs are strongly rotationally supported at large radii, similar to other disk galaxies, though within their half-light radii the $rm V_{rot}/ sigma$ values of their H I are comparable to stellar $rm V_{rot}/ sigma$ values of dwarf elliptical galaxies. We find that LCBGs disks on average are gravitationally stable, though conditions may be conducive to local gravitational instabilities at the largest radii. Such instabilities could lead to the formation of star-forming gas clumps in the disk, resulting eventually in a small central bulge or bar.
We present the first rest-frame UV population study of 17 heavily reddened, high-luminosity (E(B-V)$_{rm{QSO}}gtrsim$ 0.5; L$_{rm{bol}}>$ 10$^{46}$ergs$^{-1}$) broad-line quasars at $1.5 < z < 2.7$. We combine the first year of deep, optical, ground- based observations from the Dark Energy Survey (DES) with the near infrared VISTA Hemisphere Survey (VHS) and UKIDSS Large Area Survey (ULAS) data, from which the reddened quasars were initially identified. We demonstrate that the significant dust reddening towards the quasar in our sample allows host galaxy emission to be detected at the rest-frame UV wavelengths probed by the DES photometry. By exploiting this reddening effect, we disentangle the quasar emission from that of the host galaxy via spectral energy distribution (SED) fitting. We find evidence for a relatively unobscured, star-forming host galaxy in at least ten quasars, with a further three quasars exhibiting emission consistent with either star formation or scattered light. From the rest-frame UV emission, we derive instantaneous, dust-corrected star formation rates (SFRs) in the range 25 < SFR$_{rm{UV}}$ < 365 M$_{odot}$yr$^{-1}$, with an average SFR$_{rm{UV}}$ = 130 $pm$ 95 M$_{odot}$yr$^{-1}$. We find a broad correlation between SFR$_{rm{UV}}$ and the bolometric quasar luminosity. Overall, our results show evidence for coeval star formation and black hole accretion occurring in luminous, reddened quasars at the peak epoch of galaxy formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا