ترغب بنشر مسار تعليمي؟ اضغط هنا

PermuteFormer: Efficient Relative Position Encoding for Long Sequences

93   0   0.0 ( 0 )
 نشر من قبل Peng Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Peng Chen




اسأل ChatGPT حول البحث

A recent variation of Transformer, Performer, scales Transformer to longer sequences with a linear attention mechanism. However, it is not compatible with relative position encoding, which has advantages over absolute position encoding. In this paper, we discuss possible ways to add relative position encoding to Performer. Based on the analysis, we propose PermuteFormer, a Performer-based model with relative position encoding that scales linearly on long sequences. PermuteFormer applies position-dependent transformation on queries and keys to encode positional information into the attention module. This transformation is carefully crafted so that the final output of self-attention is not affected by absolute positions of tokens. PermuteFormer introduces negligible computational overhead by design that it runs as fast as Performer. We evaluate PermuteFormer on Long-Range Arena, a dataset for long sequences, as well as WikiText-103, a language modeling dataset. The experiments show that PermuteFormer uniformly improves the performance of Performer with almost no computational overhead and outperforms vanilla Transformer on most of the tasks.



قيم البحث

اقرأ أيضاً

Transformers are state of the art models in NLP that map a given input sequence of vectors to an output sequence of vectors. However these models are permutation equivariant, and additive position embeddings to the input are used to supply the inform ation about the order of the input tokens. Further, for some tasks, additional additive segment embeddings are used to denote different types of input sentences. Recent works proposed variations of positional encodings with relative position encodings achieving better performance. In this work, we do a systematic study comparing different position encodings and understanding the reasons for differences in their performance. We demonstrate a simple yet effective way to encode position and segment into the Transformer models. The proposed method performs on par with SOTA on GLUE, XTREME and WMT benchmarks while saving computation costs.
Relative position encoding (RPE) is important for transformer to capture sequence ordering of input tokens. General efficacy has been proven in natural language processing. However, in computer vision, its efficacy is not well studied and even remain s controversial, e.g., whether relative position encoding can work equally well as absolute position? In order to clarify this, we first review existing relative position encoding methods and analyze their pros and cons when applied in vision transformers. We then propose new relative position encoding methods dedicated to 2D images, called image RPE (iRPE). Our methods consider directional relative distance modeling as well as the interactions between queries and relative position embeddings in self-attention mechanism. The proposed iRPE methods are simple and lightweight. They can be easily plugged into transformer blocks. Experiments demonstrate that solely due to the proposed encoding methods, DeiT and DETR obtain up to 1.5% (top-1 Acc) and 1.3% (mAP) stable improvements over their origin
We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating t he detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.
We show that generating English Wikipedia articles can be approached as a multi- document summarization of source documents. We use extractive summarization to coarsely identify salient information and a neural abstractive model to generate the artic le. For the abstractive model, we introduce a decoder-only architecture that can scalably attend to very long sequences, much longer than typical encoder- decoder architectures used in sequence transduction. We show that this model can generate fluent, coherent multi-sentence paragraphs and even whole Wikipedia articles. When given reference documents, we show it can extract relevant factual information as reflected in perplexity, ROUGE scores and human evaluations.
Recent studies on open-domain question answering have achieved prominent performance improvement using pre-trained language models such as BERT. State-of-the-art approaches typically follow the retrieve and read pipeline and employ BERT-based reranke r to filter retrieved documents before feeding them into the reader module. The BERT retriever takes as input the concatenation of question and each retrieved document. Despite the success of these approaches in terms of QA accuracy, due to the concatenation, they can barely handle high-throughput of incoming questions each with a large collection of retrieved documents. To address the efficiency problem, we propose DC-BERT, a decoupled contextual encoding framework that has dual BERT models: an online BERT which encodes the question only once, and an offline BERT which pre-encodes all the documents and caches their encodings. On SQuAD Open and Natural Questions Open datasets, DC-BERT achieves 10x speedup on document retrieval, while retaining most (about 98%) of the QA performance compared to state-of-the-art approaches for open-domain question answering.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا