ﻻ يوجد ملخص باللغة العربية
We present Graformer, a novel Transformer-based encoder-decoder architecture for graph-to-text generation. With our novel graph self-attention, the encoding of a node relies on all nodes in the input graph - not only direct neighbors - facilitating the detection of global patterns. We represent the relation between two nodes as the length of the shortest path between them. Graformer learns to weight these node-node relations differently for different attention heads, thus virtually learning differently connected views of the input graph. We evaluate Graformer on two popular graph-to-text generation benchmarks, AGENDA and WebNLG, where it achieves strong performance while using many fewer parameters than other approaches.
Generating texts which express complex ideas spanning multiple sentences requires a structured representation of their content (document plan), but these representations are prohibitively expensive to manually produce. In this work, we address the pr
Existing pre-trained models for knowledge-graph-to-text (KG-to-text) generation simply fine-tune text-to-text pre-trained models such as BART or T5 on KG-to-text datasets, which largely ignore the graph structure during encoding and lack elaborate pr
Knowledge graphs (KGs) can vary greatly from one domain to another. Therefore supervised approaches to both graph-to-text generation and text-to-graph knowledge extraction (semantic parsing) will always suffer from a shortage of domain-specific paral
Most of the existing text generative steganographic methods are based on coding the conditional probability distribution of each word during the generation process, and then selecting specific words according to the secret information, so as to achie
Two important tasks at the intersection of knowledge graphs and natural language processing are graph-to-text (G2T) and text-to-graph (T2G) conversion. Due to the difficulty and high cost of data collection, the supervised data available in the two f