ﻻ يوجد ملخص باللغة العربية
Relative position encoding (RPE) is important for transformer to capture sequence ordering of input tokens. General efficacy has been proven in natural language processing. However, in computer vision, its efficacy is not well studied and even remains controversial, e.g., whether relative position encoding can work equally well as absolute position? In order to clarify this, we first review existing relative position encoding methods and analyze their pros and cons when applied in vision transformers. We then propose new relative position encoding methods dedicated to 2D images, called image RPE (iRPE). Our methods consider directional relative distance modeling as well as the interactions between queries and relative position embeddings in self-attention mechanism. The proposed iRPE methods are simple and lightweight. They can be easily plugged into transformer blocks. Experiments demonstrate that solely due to the proposed encoding methods, DeiT and DETR obtain up to 1.5% (top-1 Acc) and 1.3% (mAP) stable improvements over their origin
Very recently, Window-based Transformers, which computed self-attention within non-overlapping local windows, demonstrated promising results on image classification, semantic segmentation, and object detection. However, less study has been devoted to
This paper presents a new Vision Transformer (ViT) architecture Multi-Scale Vision Longformer, which significantly enhances the ViT of cite{dosovitskiy2020image} for encoding high-resolution images using two techniques. The first is the multi-scale m
A recent variation of Transformer, Performer, scales Transformer to longer sequences with a linear attention mechanism. However, it is not compatible with relative position encoding, which has advantages over absolute position encoding. In this paper
Can Transformer perform $2mathrm{D}$ object-level recognition from a pure sequence-to-sequence perspective with minimal knowledge about the $2mathrm{D}$ spatial structure? To answer this question, we present You Only Look at One Sequence (YOLOS), a s
Transformers are state of the art models in NLP that map a given input sequence of vectors to an output sequence of vectors. However these models are permutation equivariant, and additive position embeddings to the input are used to supply the inform