ﻻ يوجد ملخص باللغة العربية
The increasing complexity of Internet-of-Things (IoT) applications and near-sensor processing algorithms is pushing the computational power of low-power, battery-operated end-node systems. This trend also reveals growing demands for high-speed and energy-efficient inter-chip communications to manage the increasing amount of data coming from off-chip sensors and memories. While traditional micro-controller interfaces such as SPIs cannot cope with tight energy and large bandwidth requirements, low-voltage swing transceivers can tackle this challenge thanks to their capability to achieve several Gbps of the communication speed at milliwatt power levels. However, recent research on high-speed serial links focused on high-performance systems, with a power consumption significantly larger than the one of low-power IoT end-nodes, or on stand-alone designs not integrated at a system level. This paper presents a low-swing transceiver for the energy-efficient and low power chip-to-chip communication fully integrated within an IoT end-node System-on-Chip, fabricated in CMOS 65nm technology. The transceiver can be easily controlled via a software interface; thus, we can consider realistic scenarios for the data communication, which cannot be assessed in stand-alone prototypes. Chip measurements show that the transceiver achieves 8.46x higher energy efficiency at 15.9x higher performance than a traditional microcontroller interface such as a single-SPI.
We present a power efficient clock-less fully asynchronous bit-serial Low Voltage Differential Signaling (LVDS) link with event-driven instant wake-up and self-sleep features, optimized for high speed inter-chip communication of asynchronous address-
Emerging applications such as wireless sensing, position location, robotics, and many more are driven by the ultra-wide bandwidths available at millimeter-wave (mmWave) and Terahertz (THz) frequencies. The characterization and efficient utilization o
Second-order nonlinear optical processes are used to convert light from one wavelength to another and to generate quantum entanglement. Creating chip-scale devices to more efficiently realize and control these interactions greatly increases the reach
The next wave of on-device AI will likely require energy-efficient deep neural networks. Brain-inspired spiking neural networks (SNN) has been identified to be a promising candidate. Doing away with the need for multipliers significantly reduces ener
Energy-constrained sensor nodes can adaptively optimize their energy consumption if a continuous measurement exists. This is of particular importance in scenarios of high dynamics such as energy harvesting or adaptive task scheduling. However, self-m