ﻻ يوجد ملخص باللغة العربية
Energy-constrained sensor nodes can adaptively optimize their energy consumption if a continuous measurement exists. This is of particular importance in scenarios of high dynamics such as energy harvesting or adaptive task scheduling. However, self-measuring of power consumption at reasonable cost and complexity is unavailable as a generic system service. In this paper, we present Eco, a hardware-software co-design enabling generic energy management on IoT nodes. Eco is tailored to devices with limited resources and thus targets most of the upcoming IoT scenarios. The proposed measurement module combines commodity components with a common system interfaces to achieve easy, flexible integration with various hardware platforms and the RIOT IoT operating system. We thoroughly evaluate and compare accuracy and overhead. Our findings indicate that our commodity design competes well with highly optimized solutions, while being significantly more versatile. We employ Eco for energy management on RIOT and validate its readiness for deployment in a five-week field trial integrated with energy harvesting.
Clock configuration within constrained general-purpose microcontrollers takes a key role in tuning performance, power consumption, and timing accuracy of applications in the Internet of Things (IoT). Subsystems governing the underlying clock tree mus
Personalized PageRank (PPR) is a graph algorithm that evaluates the importance of the surrounding nodes from a source node. Widely used in social network related applications such as recommender systems, PPR requires real-time responses (latency) for
Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multi-modal data from different sensors, requiring diverse d
The use of deep learning has grown at an exponential rate, giving rise to numerous specialized hardware and software systems for deep learning. Because the design space of deep learning software stacks and hardware accelerators is diverse and vast, p
Tiled spatial architectures have proved to be an effective solution to build large-scale DNN accelerators. In particular, interconnections between tiles are critical for high performance in these tile-based architectures. In this work, we identify th