ﻻ يوجد ملخص باللغة العربية
Second-order nonlinear optical processes are used to convert light from one wavelength to another and to generate quantum entanglement. Creating chip-scale devices to more efficiently realize and control these interactions greatly increases the reach of photonics. Optical crystals and guided wave devices made from lithium niobate and potassium titanyl phosphate are typically used to realize second-order processes but face significant drawbacks in scalability, power, and tailorability when compared to emerging integrated photonic systems. Silicon or silicon nitride integrated photonic circuits enhance and control the third-order optical nonlinearity by confining light in dispersion-engineered waveguides and resonators. An analogous platform for second-order nonlinear optics remains an outstanding challenge in photonics. It would enable stronger interactions at lower power and reduce the number of competing nonlinear processes that emerge. Here we demonstrate efficient frequency doubling and parametric oscillation in a thin-film lithium niobate photonic circuit. Our device combines recent progress on periodically poled thin-film lithium niobate waveguidesand low-loss microresonators. Here we realize efficient >10% second-harmonic generation and parametric oscillation with microwatts of optical power using a periodically-poled thin-film lithium niobate microresonator. The operating regimes of this system are controlled using the relative detuning of the intracavity resonances. During nondegenerate oscillation, the emission wavelength is tuned over terahertz by varying the pump frequency by 100s of megahertz. We observe highly-enhanced effective third-order nonlinearities caused by cascaded second-order processes resulting in parametric oscillation. These resonant second-order nonlinear circuits will form a crucial part of the emerging nonlinear and quantum photonics platforms.
The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum t
Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. U
Nanophotonic entangled-photon sources are a critical building block of chip-scale quantum photonic architecture and have seen significant development over the past two decades. These sources generate photon pairs that typically span over a narrow fre
Second-order optical processes lead to a host of applications in classical and quantum optics. With the enhancement of parametric interactions that arise due to light confinement, on-chip implementations promise very-large-scale photonic integration.
On-chip optical interconnect has been widely accepted as a promising technology to realize future large-scale multiprocessors. Mode-division multiplexing (MDM) provides a new degree of freedom for optical interconnects to dramatically increase the li