ﻻ يوجد ملخص باللغة العربية
We obtain the lower bounds for ergodic convergence rates, including spectral gaps and convergence rates in strong ergodicity for time-changed symmetric L{e}vy processes by using harmonic function and reversible measure. As direct applications, explicit sufficient conditions for exponential and strong ergodicity are given. Some examples are also presented.
In a step reinforced random walk, at each integer time and with a fixed probability p $in$ (0, 1), the walker repeats one of his previous steps chosen uniformly at random, and with complementary probability 1 -- p, the walker makes an independent new
The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence effects if subjected to stati
In this paper, we deal with a class of reflected backward stochastic differential equations associated to the subdifferential operator of a lower semi-continuous convex function driven by Teugels martingales associated with L{e}vy process. We obtain
We work with symmetric extensions based on L{e}vy Collapse and extend a few results of Arthur Apter. We prove a conjecture of Ioanna Dimitriou from her P.h.d. thesis. We also observe that if $V$ is a model of ZFC, then $DC_{<kappa}$ can be preserved
Intermittent stochastic processes appear in a wide field, such as chemistry, biology, ecology, and computer science. This paper builds up the theory of intermittent continuous time random walk (CTRW) and L{e}vy walk, in which the particles are stocha