ﻻ يوجد ملخص باللغة العربية
The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence effects if subjected to stationary noise. The associated quantum diffusion increases monotonically as a function of a parameter characterising the noise distribution. In this work, for the Levy kicked atom-optics rotor, it is experimentally shown that by tuning a parameter characterizing the Levy distribution, quantum diffusion displays non-monotonic behaviour. The parameters for optimal diffusion rates are analytically obtained and they reveal a good agreement with the cold atom experiments and numerics. The non-monotonicity is shown to be a quantum effect that vanishes in the classical limit.
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra
Complex chemical reaction networks, which underlie many industrial and biological processes, often exhibit non-monotonic changes in chemical species concentrations, typically described using nonlinear models. Such non-monotonic dynamics are in princi
We obtain the lower bounds for ergodic convergence rates, including spectral gaps and convergence rates in strong ergodicity for time-changed symmetric L{e}vy processes by using harmonic function and reversible measure. As direct applications, explic
In a step reinforced random walk, at each integer time and with a fixed probability p $in$ (0, 1), the walker repeats one of his previous steps chosen uniformly at random, and with complementary probability 1 -- p, the walker makes an independent new
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body a