ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-monotonic diffusion rates in atom-optics L{e}vy kicked rotor

113   0   0.0 ( 0 )
 نشر من قبل M.S. Santhanam
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The dynamics of chaotic Hamiltonian systems such as the kicked rotor continues to guide our understanding of transport and localization processes. The localized states of the quantum kicked rotor decay due to decoherence effects if subjected to stationary noise. The associated quantum diffusion increases monotonically as a function of a parameter characterising the noise distribution. In this work, for the Levy kicked atom-optics rotor, it is experimentally shown that by tuning a parameter characterizing the Levy distribution, quantum diffusion displays non-monotonic behaviour. The parameters for optimal diffusion rates are analytically obtained and they reveal a good agreement with the cold atom experiments and numerics. The non-monotonicity is shown to be a quantum effect that vanishes in the classical limit.



قيم البحث

اقرأ أيضاً

220 - Jiao Wang , Chushun Tian , 2014
The quantum kicked rotor (QKR) driven by $d$ incommensurate frequencies realizes the universality class of $d$-dimensional disordered metals. For $d>3$, the system exhibits an Anderson metal-insulator transition which has been observed within the fra mework of an atom optics realization. However, the absence of genuine randomness in the QKR reflects in critical phenomena beyond those of the Anderson universality class. Specifically, the system shows strong sensitivity to the algebraic properties of its effective Planck constant $tilde h equiv 4pi /q$. For integer $q$, the system may be in a globally integrable state, in a `super-metallic configuration characterized by diverging response coefficients, Anderson localized, metallic, or exhibit transitions between these phases. We present numerical data for different $q$-values and effective dimensionalities, with the focus being on parameter configurations which may be accessible to experimental investigations.
Complex chemical reaction networks, which underlie many industrial and biological processes, often exhibit non-monotonic changes in chemical species concentrations, typically described using nonlinear models. Such non-monotonic dynamics are in princi ple possible even in linear models if the matrices defining the models are non-normal, as characterized by a necessarily non-orthogonal set of eigenvectors. However, the extent to which non-normality is responsible for non-monotonic behavior remains an open question. Here, using a master equation to model the reaction dynamics, we derive a general condition for observing non-monotonic dynamics of individual species, establishing that non-normality promotes non-monotonicity but is not a requirement for it. In contrast, we show that non-normality is a requirement for non-monotonic dynamics to be observed in the Renyi entropy. Using hydrogen combustion as an example application, we demonstrate that non-monotonic dynamics under experimental conditions are supported by a linear chain of connected components, in contrast with the dominance of a single giant component observed in typical random reaction networks. The exact linearity of the master equation enables development of rigorous theory and simulations for dynamical networks of unprecedented size (approaching $10^5$ dynamical variables, even for a network of only 20 reactions and involving less than 100 atoms). Our conclusions are expected to hold for other combustion processes, and the general theory we develop is applicable to all chemical reaction networks, including biological ones.
120 - Tao Wang 2021
We obtain the lower bounds for ergodic convergence rates, including spectral gaps and convergence rates in strong ergodicity for time-changed symmetric L{e}vy processes by using harmonic function and reversible measure. As direct applications, explic it sufficient conditions for exponential and strong ergodicity are given. Some examples are also presented.
377 - Jean Bertoin 2018
In a step reinforced random walk, at each integer time and with a fixed probability p $in$ (0, 1), the walker repeats one of his previous steps chosen uniformly at random, and with complementary probability 1 -- p, the walker makes an independent new step with a given distribution. Examples in the literature include the so-called elephant random walk and the shark random swim. We consider here a continuous time analog, when the random walk is replaced by a L{e}vy process. For sub-critical (or admissible) memory parameters p < p c , where p c is related to the Blumenthal-Getoor index of the L{e}vy process, we construct a noise reinforced L{e}vy process. Our main result shows that the step-reinforced random walks corresponding to discrete time skeletons of the L{e}vy process, converge weakly to the noise reinforced L{e}vy process as the time-mesh goes to 0.
The field of quantum chaos originated in the study of spectral statistics for interacting many-body systems, but this heritage was almost forgotten when single-particle systems moved into the focus. In recent years new interest emerged in many-body a spects of quantum chaos. We study a chain of interacting, kicked spins and carry out a semiclassical analysis that is capable of identifying all kinds of genuin many-body periodic orbits. We show that the collective many-body periodic orbits can fully dominate the spectra in certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا