ﻻ يوجد ملخص باللغة العربية
Semantic information provides intra-class consistency and inter-class discriminability beyond visual concepts, which has been employed in Few-Shot Learning (FSL) to achieve further gains. However, semantic information is only available for labeled samples but absent for unlabeled samples, in which the embeddings are rectified unilaterally by guiding the few labeled samples with semantics. Therefore, it is inevitable to bring a cross-modal bias between semantic-guided samples and nonsemantic-guided samples, which results in an information asymmetry problem. To address this problem, we propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples, which builds information symmetry among all samples in both visual and semantic modalities. Specifically, the MAP-Net transfers the neighbor information by the graph propagation to generate the pseudo-semantics for unlabeled samples guided by the completed visual relationships and rectify the feature embeddings. In addition, due to the large discrepancy between visual and semantic modalities, we design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial. Extensive experimental results on three semantic-labeled datasets, i.e., Caltech-UCSD-Birds 200-2011, SUN Attribute Database, and Oxford 102 Flower, have demonstrated that our proposed method achieves promising performance and outperforms the state-of-the-art approaches, which indicates the necessity of information symmetry.
Recently, the transductive graph-based methods have achieved great success in the few-shot classification task. However, most existing methods ignore exploring the class-level knowledge that can be easily learned by humans from just a handful of samp
Most graph-network-based meta-learning approaches model instance-level relation of examples. We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel a
Most few-shot learning models utilize only one modality of data. We would like to investigate qualitatively and quantitatively how much will the model improve if we add an extra modality (i.e. text description of the image), and how it affects the le
Zero-shot learning (ZSL) aims to classify images of an unseen class only based on a few attributes describing that class but no access to any training sample. A popular strategy is to learn a mapping between the semantic space of class attributes and
The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set