ترغب بنشر مسار تعليمي؟ اضغط هنا

DPGN: Distribution Propagation Graph Network for Few-shot Learning

271   0   0.0 ( 0 )
 نشر من قبل Liangliang Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most graph-network-based meta-learning approaches model instance-level relation of examples. We extend this idea further to explicitly model the distribution-level relation of one example to all other examples in a 1-vs-N manner. We propose a novel approach named distribution propagation graph network (DPGN) for few-shot learning. It conveys both the distribution-level relations and instance-level relations in each few-shot learning task. To combine the distribution-level relations and instance-level relations for all examples, we construct a dual complete graph network which consists of a point graph and a distribution graph with each node standing for an example. Equipped with dual graph architecture, DPGN propagates label information from labeled examples to unlabeled examples within several update generations. In extensive experiments on few-shot learning benchmarks, DPGN outperforms state-of-the-art results by a large margin in 5% $sim$ 12% under supervised setting and 7% $sim$ 13% under semi-supervised setting. Code will be released.



قيم البحث

اقرأ أيضاً

The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes. In this paper, we aim to optimize the attribute space for ZSL by training a propagation mechanism to refine the semantic attributes of each class based on its neighbors and related classes on a graph of classes. We show that the propagated attributes can produce classifiers for zero-shot classes with significantly improved performance in different ZSL settings. The graph of classes is usually free or very cheap to acquire such as WordNet or ImageNet classes. When the graph is not provided, given pre-defined semantic embeddings of the classes, we can learn a mechanism to generate the graph in an end-to-end manner along with the propagation mechanism. However, this graph-aided technique has not been well-explored in the literature. In this paper, we introduce the attribute propagation network (APNet), which is composed of 1) a graph propagation model generating attribute vector for each class and 2) a parameterized nearest neighbor (NN) classifier categorizing an image to the class with the nearest attribute vector to the images embedding. For better generalization over unseen classes, different from previous methods, we adopt a meta-learning strategy to train the propagation mechanism and the similarity metric for the NN classifier on multiple sub-graphs, each associated with a classification task over a subset of training classes. In experiments with two zero-shot learning settings and five benchmark datasets, APNet achieves either compelling performance or new state-of-the-art results.
Recently, the transductive graph-based methods have achieved great success in the few-shot classification task. However, most existing methods ignore exploring the class-level knowledge that can be easily learned by humans from just a handful of samp les. In this paper, we propose an Explicit Class Knowledge Propagation Network (ECKPN), which is composed of the comparison, squeeze and calibration modules, to address this problem. Specifically, we first employ the comparison module to explore the pairwise sample relations to learn rich sample representations in the instance-level graph. Then, we squeeze the instance-level graph to generate the class-level graph, which can help obtain the class-level visual knowledge and facilitate modeling the relations of different classes. Next, the calibration module is adopted to characterize the relations of the classes explicitly to obtain the more discriminative class-level knowledge representations. Finally, we combine the class-level knowledge with the instance-level sample representations to guide the inference of the query samples. We conduct extensive experiments on four few-shot classification benchmarks, and the experimental results show that the proposed ECKPN significantly outperforms the state-of-the-art methods.
100 - Zhong Ji , Zhishen Hou , Xiyao Liu 2021
Semantic information provides intra-class consistency and inter-class discriminability beyond visual concepts, which has been employed in Few-Shot Learning (FSL) to achieve further gains. However, semantic information is only available for labeled sa mples but absent for unlabeled samples, in which the embeddings are rectified unilaterally by guiding the few labeled samples with semantics. Therefore, it is inevitable to bring a cross-modal bias between semantic-guided samples and nonsemantic-guided samples, which results in an information asymmetry problem. To address this problem, we propose a Modal-Alternating Propagation Network (MAP-Net) to supplement the absent semantic information of unlabeled samples, which builds information symmetry among all samples in both visual and semantic modalities. Specifically, the MAP-Net transfers the neighbor information by the graph propagation to generate the pseudo-semantics for unlabeled samples guided by the completed visual relationships and rectify the feature embeddings. In addition, due to the large discrepancy between visual and semantic modalities, we design a Relation Guidance (RG) strategy to guide the visual relation vectors via semantics so that the propagated information is more beneficial. Extensive experimental results on three semantic-labeled datasets, i.e., Caltech-UCSD-Birds 200-2011, SUN Attribute Database, and Oxford 102 Flower, have demonstrated that our proposed method achieves promising performance and outperforms the state-of-the-art approaches, which indicates the necessity of information symmetry.
Few-shot learning aims to learn novel categories from very few samples given some base categories with sufficient training samples. The main challenge of this task is the novel categories are prone to dominated by color, texture, shape of the object or background context (namely specificity), which are distinct for the given few training samples but not common for the corresponding categories (see Figure 1). Fortunately, we find that transferring information of the correlated based categories can help learn the novel concepts and thus avoid the novel concept being dominated by the specificity. Besides, incorporating semantic correlations among different categories can effectively regularize this information transfer. In this work, we represent the semantic correlations in the form of structured knowledge graph and integrate this graph into deep neural networks to promote few-shot learning by a novel Knowledge Graph Transfer Network (KGTN). Specifically, by initializing each node with the classifier weight of the corresponding category, a propagation mechanism is learned to adaptively propagate node message through the graph to explore node interaction and transfer classifier information of the base categories to those of the novel ones. Extensive experiments on the ImageNet dataset show significant performance improvement compared with current leading competitors. Furthermore, we construct an ImageNet-6K dataset that covers larger scale categories, i.e, 6,000 categories, and experiments on this dataset further demonstrate the effectiveness of our proposed model. Our codes and models are available at https://github.com/MyChocer/KGTN .
78 - Wenbin Li , Lei Wang , Jing Huo 2020
The core idea of metric-based few-shot image classification is to directly measure the relations between query images and support classes to learn transferable feature embeddings. Previous work mainly focuses on image-level feature representations, w hich actually cannot effectively estimate a classs distribution due to the scarcity of samples. Some recent work shows that local descriptor based representations can achieve richer representations than image-level based representations. However, such works are still based on a less effective instance-level metric, especially a symmetric metric, to measure the relations between query images and support classes. Given the natural asymmetric relation between a query image and a support class, we argue that an asymmetric measure is more suitable for metric-based few-shot learning. To that end, we propose a novel Asymmetric Distribution Measure (ADM) network for few-shot learning by calculating a joint local and global asymmetric measure between two multivariate local distributions of queries and classes. Moreover, a task-aware Contrastive Measure Strategy (CMS) is proposed to further enhance the measure function. On popular miniImageNet and tieredImageNet, we achieve $3.02%$ and $1.56%$ gains over the state-of-the-art method on the $5$-way $1$-shot task, respectively, validating our innovative design of asymmetric distribution measures for few-shot learning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا