ترغب بنشر مسار تعليمي؟ اضغط هنا

Isometric Propagation Network for Generalized Zero-shot Learning

437   0   0.0 ( 0 )
 نشر من قبل Lu Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero-shot learning (ZSL) aims to classify images of an unseen class only based on a few attributes describing that class but no access to any training sample. A popular strategy is to learn a mapping between the semantic space of class attributes and the visual space of images based on the seen classes and their data. Thus, an unseen class image can be ideally mapped to its corresponding class attributes. The key challenge is how to align the representations in the two spaces. For most ZSL settings, the attributes for each seen/unseen class are only represented by a vector while the seen-class data provide much more information. Thus, the imbalanced supervision from the semantic and the visual space can make the learned mapping easily overfitting to the seen classes. To resolve this problem, we propose Isometric Propagation Network (IPN), which learns to strengthen the relation between classes within each space and align the class dependency in the two spaces. Specifically, IPN learns to propagate the class representations on an auto-generated graph within each space. In contrast to only aligning the resulted static representation, we regularize the two dynamic propagation procedures to be isometric in terms of the two graphs edge weights per step by minimizing a consistency loss between them. IPN achieves state-of-the-art performance on three popular ZSL benchmarks. To evaluate the generalization capability of IPN, we further build two larger benchmarks with more diverse unseen classes and demonstrate the advantages of IPN on them.



قيم البحث

اقرأ أيضاً

The goal of zero-shot learning (ZSL) is to train a model to classify samples of classes that were not seen during training. To address this challenging task, most ZSL methods relate unseen test classes to seen(training) classes via a pre-defined set of attributes that can describe all classes in the same semantic space, so the knowledge learned on the training classes can be adapted to unseen classes. In this paper, we aim to optimize the attribute space for ZSL by training a propagation mechanism to refine the semantic attributes of each class based on its neighbors and related classes on a graph of classes. We show that the propagated attributes can produce classifiers for zero-shot classes with significantly improved performance in different ZSL settings. The graph of classes is usually free or very cheap to acquire such as WordNet or ImageNet classes. When the graph is not provided, given pre-defined semantic embeddings of the classes, we can learn a mechanism to generate the graph in an end-to-end manner along with the propagation mechanism. However, this graph-aided technique has not been well-explored in the literature. In this paper, we introduce the attribute propagation network (APNet), which is composed of 1) a graph propagation model generating attribute vector for each class and 2) a parameterized nearest neighbor (NN) classifier categorizing an image to the class with the nearest attribute vector to the images embedding. For better generalization over unseen classes, different from previous methods, we adopt a meta-learning strategy to train the propagation mechanism and the similarity metric for the NN classifier on multiple sub-graphs, each associated with a classification task over a subset of training classes. In experiments with two zero-shot learning settings and five benchmark datasets, APNet achieves either compelling performance or new state-of-the-art results.
From the beginning of zero-shot learning research, visual attributes have been shown to play an important role. In order to better transfer attribute-based knowledge from known to unknown classes, we argue that an image representation with integrated attribute localization ability would be beneficial for zero-shot learning. To this end, we propose a novel zero-shot representation learning framework that jointly learns discriminative global and local features using only class-level attributes. While a visual-semantic embedding layer learns global features, local features are learned through an attribute prototype network that simultaneously regresses and decorrelates attributes from intermediate features. We show that our locality augmented image representations achieve a new state-of-the-art on three zero-shot learning benchmarks. As an additional benefit, our model points to the visual evidence of the attributes in an image, e.g. for the CUB dataset, confirming the improved attribute localization ability of our image representation.
Generalized zero-shot learning (GZSL) aims to recognize objects from both seen and unseen classes, when only the labeled examples from seen classes are provided. Recent feature generation methods learn a generative model that can synthesize the missi ng visual features of unseen classes to mitigate the data-imbalance problem in GZSL. However, the original visual feature space is suboptimal for GZSL classification since it lacks discriminative information. To tackle this issue, we propose to integrate the generation model with the embedding model, yielding a hybrid GZSL framework. The hybrid GZSL approach maps both the real and the synthetic samples produced by the generation model into an embedding space, where we perform the final GZSL classification. Specifically, we propose a contrastive embedding (CE) for our hybrid GZSL framework. The proposed contrastive embedding can leverage not only the class-wise supervision but also the instance-wise supervision, where the latter is usually neglected by existing GZSL researches. We evaluate our proposed hybrid GZSL framework with contrastive embedding, named CE-GZSL, on five benchmark datasets. The results show that our CEGZSL method can outperform the state-of-the-arts by a significant margin on three datasets. Our codes are available on https://github.com/Hanzy1996/CE-GZSL.
Zero-shot object recognition or zero-shot learning aims to transfer the object recognition ability among the semantically related categories, such as fine-grained animal or bird species. However, the images of different fine-grained objects tend to m erely exhibit subtle differences in appearance, which will severely deteriorate zero-shot object recognition. To reduce the superfluous information in the fine-grained objects, in this paper, we propose to learn the redundancy-free features for generalized zero-shot learning. We achieve our motivation by projecting the original visual features into a new (redundancy-free) feature space and then restricting the statistical dependence between these two feature spaces. Furthermore, we require the projected features to keep and even strengthen the category relationship in the redundancy-free feature space. In this way, we can remove the redundant information from the visual features without losing the discriminative information. We extensively evaluate the performance on four benchmark datasets. The results show that our redundancy-free feature based generalized zero-shot learning (RFF-GZSL) approach can achieve competitive results compared with the state-of-the-arts.
The performance of generative zero-shot methods mainly depends on the quality of generated features and how well the model facilitates knowledge transfer between visual and semantic domains. The quality of generated features is a direct consequence o f the ability of the model to capture the several modes of the underlying data distribution. To address these issues, we propose a new two-level joint maximization idea to augment the generative network with an inference network during training which helps our model capture the several modes of the data and generate features that better represent the underlying data distribution. This provides strong cross-modal interaction for effective transfer of knowledge between visual and semantic domains. Furthermore, existing methods train the zero-shot classifier either on generate synthetic image features or latent embeddings produced by leveraging representation learning. In this work, we unify these paradigms into a single model which in addition to synthesizing image features, also utilizes the representation learning capabilities of the inference network to provide discriminative features for the final zero-shot recognition task. We evaluate our approach on four benchmark datasets i.e. CUB, FLO, AWA1 and AWA2 against several state-of-the-art methods, and show its performance. We also perform ablation studies to analyze and understand our method more carefully for the Generalized Zero-shot Learning task.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا