ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite time large deviations via matrix product states

344   0   0.0 ( 0 )
 نشر من قبل Luke Causer
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent work has shown the effectiveness of tensor network methods for computing large deviation functions in constrained stochastic models in the infinite time limit. Here we show that these methods can also be used to study the statistics of dynamical observables at arbitrary finite time. This is a harder problem because, in contrast to the infinite time case where only the extremal eigenstate of a tilted Markov generator is relevant, for finite time the whole spectrum plays a role. We show that finite time dynamical partition sums can be computed efficiently and accurately in one dimension using matrix product states, and describe how to use such results to generate rare event trajectories on demand. We apply our methods to the Fredrickson-Andersen (FA) and East kinetically constrained models, and to the symmetric simple exclusion process (SSEP), unveiling dynamical phase diagrams in terms of counting field and trajectory time. We also discuss extensions of this method to higher dimensions.



قيم البحث

اقرأ أيضاً

The large deviation (LD) statistics of dynamical observables is encoded in the spectral properties of deformed Markov generators. Recent works have shown that tensor network methods are well suited to compute the relevant leading eigenvalues and eige nvectors accurately. However, the efficient generation of the corresponding rare trajectories is a harder task. Here we show how to exploit the MPS approximation of the dominant eigenvector to implement an efficient sampling scheme which closely resembles the optimal (so-called Doob) dynamics that realises the rare events. We demonstrate our approach on three well-studied lattice models, the Fredrickson-Andersen and East kinetically constrained models (KCMs), and the symmetric simple exclusion process (SSEP). We discuss how to generalise our approach to higher dimensions.
Here we demonstrate that tensor network techniques - originally devised for the analysis of quantum many-body problems - are well suited for the detailed study of rare event statistics in kinetically constrained models (KCMs). As concrete examples we consider the Fredrickson-Andersen and East models, two paradigmatic KCMs relevant to the modelling of glasses. We show how variational matrix product states allow to numerically approximate - systematically and with high accuracy - the leading eigenstates of the tilted dynamical generators which encode the large deviation statistics of the dynamics. Via this approach we can study system sizes beyond what is possible with other methods, allowing us to characterise in detail the finite size scaling of the trajectory-space phase transition of these models, the behaviour of spectral gaps, and the spatial structure and entanglement properties of dynamical phases. We discuss the broader implications of our results.
We compare accuracy of two prime time evolution algorithms involving Matrix Product States - tDMRG (time-dependent density matrix renormalization group) and TDVP (time-dependent variational principle). The latter is supposed to be superior within a l imited and fixed auxiliary space dimension. Surprisingly, we find that the performance of algorithms depends on the model considered. In particular, many-body localized systems as well as the crossover regions between localized and delocalized phases are better described by tDMRG, contrary to the delocalized regime where TDVP indeed outperforms tDMRG in terms of accuracy and reliability. As an example, we study many-body localization transition in a large size Heisenberg chain. We discuss drawbacks of previous estimates [Phys. Rev. B 98, 174202 (2018)] of the critical disorder strength for large systems.
We investigate the use of matrix product states (MPS) to approximate ground states of critical quantum spin chains with periodic boundary conditions (PBC). We identify two regimes in the (N,D) parameter plane, where N is the size of the spin chain an d D is the dimension of the MPS matrices. In the first regime MPS can be used to perform finite size scaling (FSS). In the complementary regime the MPS simulations show instead the clear signature of finite entanglement scaling (FES). In the thermodynamic limit (or large N limit), only MPS in the FSS regime maintain a finite overlap with the exact ground state. This observation has implications on how to correctly perform FSS with MPS, as well as on the performance of recent MPS algorithms for systems with PBC. It also gives clear evidence that critical models can actually be simulated very well with MPS by using the right scaling relations; in the appendix, we give an alternative derivation of the result of Pollmann et al. [Phys. Rev. Lett. 102, 255701 (2009)] relating the bond dimension of the MPS to an effective correlation length.
We revisit the question of describing critical spin systems and field theories using matrix product states, and formulate a scaling hypothesis in terms of operators, eigenvalues of the transfer matrix, and lattice spacing in the case of field theorie s. Critical exponents and central charge are determined by optimizing the exponents such as to obtain a data collapse. We benchmark this method by studying critical Ising and Potts models, where we also obtain a scaling ansatz for the correlation length and entanglement entropy. The formulation of those scaling functions turns out to be crucial for studying critical quantum field theories on the lattice. For the case of $lambdaphi^4$ with mass $mu^2$ and lattice spacing $a$, we demonstrate a double data collapse for the correlation length $ delta xi(mu,lambda,D)=tilde{xi} left((alpha-alpha_c)(delta/a)^{-1/ u}right)$ with $D$ the bond dimension, $delta$ the gap between eigenvalues of the transfer matrix, and $alpha_c=mu_R^2/lambda$ the parameter which fixes the critical quantum field theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا