ﻻ يوجد ملخص باللغة العربية
Here we demonstrate that tensor network techniques - originally devised for the analysis of quantum many-body problems - are well suited for the detailed study of rare event statistics in kinetically constrained models (KCMs). As concrete examples we consider the Fredrickson-Andersen and East models, two paradigmatic KCMs relevant to the modelling of glasses. We show how variational matrix product states allow to numerically approximate - systematically and with high accuracy - the leading eigenstates of the tilted dynamical generators which encode the large deviation statistics of the dynamics. Via this approach we can study system sizes beyond what is possible with other methods, allowing us to characterise in detail the finite size scaling of the trajectory-space phase transition of these models, the behaviour of spectral gaps, and the spatial structure and entanglement properties of dynamical phases. We discuss the broader implications of our results.
We use a neural network ansatz originally designed for the variational optimization of quantum systems to study dynamical large deviations in classical ones. We obtain the scaled cumulant-generating function for the dynamical activity of the Fredrick
The large deviation (LD) statistics of dynamical observables is encoded in the spectral properties of deformed Markov generators. Recent works have shown that tensor network methods are well suited to compute the relevant leading eigenvalues and eige
We adapt the time-evolving block decimation (TEBD) algorithm, originally devised to simulate the dynamics of 1D quantum systems, to simulate the time-evolution of non-equilibrium stochastic systems. We describe this method in detail; a systems probab
Recent work has shown the effectiveness of tensor network methods for computing large deviation functions in constrained stochastic models in the infinite time limit. Here we show that these methods can also be used to study the statistics of dynamic
The East model is the simplest one-dimensional kinetically-constrained model of $N$ spins with a trivial equilibrium that displays anomalously large spatio-temporal fluctuations, with characteristic space-time bubbles in trajectory space, and with a