ﻻ يوجد ملخص باللغة العربية
This article reports from an ongoing evaluation for improvement action research and participatory design project in Rwanda, where the aim is to improve data use practices and the capabilities of the District Health Information Software 2 (DHIS2), an open source health information management platform, to support data use. The study of data use at health facility and district level showed that while data was used routinely at, for example, monthly coordination meetings, the DHIS2 dashboards and other analytical tools were in limited use because users preferred to use Microsoft Excel for data analysis and use. Given such findings, a major focus of the project has been directed towards identifying shortcomings in data use practices and in the software platform and to suggest, design and eventually implement changes. While the practical work on implementing improvements have been slow due to the COVID-19 pandemic, the suggested design improvements involve many levels of system design and participation, from the global core DHIS2 software team, the country DHIS2 team and local app development, the Rwanda Ministry of Health, and health workers at local level.
Experimental Particle Physics has been at the forefront of analyzing the worlds largest datasets for decades. The HEP community was the first to develop suitable software and computing tools for this task. In recent times, new toolkits and systems co
We addressed the problem of a lack of semantic representation for user-centric explanations and different explanation types in our Explanation Ontology (https://purl.org/heals/eo). Such a representation is increasingly necessary as explainability has
With the push for contact- and proximity-tracing solutions as a means to manage the spread of the pandemic, there is a distrust between the citizens and authorities that are deploying these solutions. The efficacy of the solutions relies on meeting a
Many celebrate the Internets ability to connect individuals and facilitate collective action toward a common goal. While numerous systems have been designed to support particular aspects of collective action, few systems support participatory, end-to
Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new