ﻻ يوجد ملخص باللغة العربية
Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.
The current role of data-driven science is constantly increasing its importance within Astrophysics, due to the huge amount of multi-wavelength data collected every day, characterized by complex and high-volume information requiring efficient and as
Machine learning (ML) is a standard approach for estimating the redshifts of galaxies when only photometric information is available. ML photo-z solutions have traditionally ignored the morphological information available in galaxy images or partly i
Photometric redshifts (photo-zs) are fundamental in galaxy surveys to address different topics, from gravitational lensing and dark matter distribution to galaxy evolution. The Kilo Degree Survey (KiDS), i.e. the ESO public survey on the VLT Survey T
We show that mid-infrared data from the all-sky WISE survey can be used as a robust photometric redshift indicator for powerful radio AGN, in the absence of other spectroscopic or multi-band photometric information. Our work is motivated by a desire
Based on the SDSS and SDSS-WISE quasar datasets, we put forward two schemes to estimate the photometric redshifts of quasars. Our schemes are based on the idea that the samples are firstly classified into subsamples by a classifier and then photometr