ترغب بنشر مسار تعليمي؟ اضغط هنا

Affective Decoding for Empathetic Response Generation

87   0   0.0 ( 0 )
 نشر من قبل Guanyi Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Understanding speakers feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.



قيم البحث

اقرأ أيضاً

A key trait of daily conversations between individuals is the ability to express empathy towards others, and exploring ways to implement empathy is a crucial step towards human-like dialogue systems. Previous approaches on this topic mainly focus on detecting and utilizing the users emotion for generating empathetic responses. However, since empathy includes both aspects of affection and cognition, we argue that in addition to identifying the users emotion, cognitive understanding of the users situation should also be considered. To this end, we propose a novel approach for empathetic response generation, which leverages commonsense to draw more information about the users situation and uses this additional information to further enhance the empathy expression in generated responses. We evaluate our approach on EmpatheticDialogues, which is a widely-used benchmark dataset for empathetic response generation. Empirical results demonstrate that our approach outperforms the baseline models in both automatic and human evaluations and can generate more informative and empathetic responses.
123 - Lei Shen , Jinchao Zhang , Jiao Ou 2021
Researches on dialogue empathy aim to endow an agent with the capacity of accurate understanding and proper responding for emotions. Existing models for empathetic dialogue generation focus on the emotion flow in one direction, that is, from the cont ext to response. We argue that conducting an empathetic conversation is a bidirectional process, where empathy occurs when the emotions of two interlocutors could converge on the same point, i.e., reaching an emotion consensus. Besides, we also find that the empathetic dialogue corpus is extremely limited, which further restricts the model performance. To address the above issues, we propose a dual-generative model, Dual-Emp, to simultaneously construct the emotion consensus and utilize some external unpaired data. Specifically, our model integrates a forward dialogue model, a backward dialogue model, and a discrete latent variable representing the emotion consensus into a unified architecture. Then, to alleviate the constraint of paired data, we extract unpaired emotional data from open-domain conversations and employ Dual-Emp to produce pseudo paired empathetic samples, which is more efficient and low-cost than the human annotation. Automatic and human evaluations demonstrate that our method outperforms competitive baselines in producing coherent and empathetic responses.
Keyphrase generation (KG) aims to summarize the main ideas of a document into a set of keyphrases. A new setting is recently introduced into this problem, in which, given a document, the model needs to predict a set of keyphrases and simultaneously d etermine the appropriate number of keyphrases to produce. Previous work in this setting employs a sequential decoding process to generate keyphrases. However, such a decoding method ignores the intrinsic hierarchical compositionality existing in the keyphrase set of a document. Moreover, previous work tends to generate duplicated keyphrases, which wastes time and computing resources. To overcome these limitations, we propose an exclusive hierarchical decoding framework that includes a hierarchical decoding process and either a soft or a hard exclusion mechanism. The hierarchical decoding process is to explicitly model the hierarchical compositionality of a keyphrase set. Both the soft and the hard exclusion mechanisms keep track of previously-predicted keyphrases within a window size to enhance the diversity of the generated keyphrases. Extensive experiments on multiple KG benchmark datasets demonstrate the effectiveness of our method to generate less duplicated and more accurate keyphrases.
One challenge for dialogue agents is to recognize feelings of the conversation partner and respond accordingly. In this work, RoBERTa-GPT2 is proposed for empathetic dialogue generation, where the pre-trained auto-encoding RoBERTa is utilised as enco der and the pre-trained auto-regressive GPT-2 as decoder. With the combination of the pre-trained RoBERTa and GPT-2, our model realizes a new state-of-the-art emotion accuracy. To enable the empathetic ability of RoBERTa-GPT2 model, we propose a commonsense knowledge and emotional concepts extractor, in which the commonsensible and emotional concepts of dialogue context are extracted for the GPT-2 decoder. The experiment results demonstrate that the empathetic dialogue generation benefits from both pre-trained encoder-decoder architecture and external knowledge.
Despite the great promise of Transformers in many sequence modeling tasks (e.g., machine translation), their deterministic nature hinders them from generalizing to high entropy tasks such as dialogue response generation. Previous work proposes to cap ture the variability of dialogue responses with a recurrent neural network (RNN)-based conditional variational autoencoder (CVAE). However, the autoregressive computation of the RNN limits the training efficiency. Therefore, we propose the Variational Transformer (VT), a variational self-attentive feed-forward sequence model. The VT combines the parallelizability and global receptive field of the Transformer with the variational nature of the CVAE by incorporating stochastic latent variables into Transformers. We explore two types of the VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of fine-grained latent variables. Then, the proposed models are evaluated on three conversational datasets with both automatic metric and human evaluation. The experimental results show that our models improve standard Transformers and other baselines in terms of diversity, semantic relevance, and human judgment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا