ﻻ يوجد ملخص باللغة العربية
Researches on dialogue empathy aim to endow an agent with the capacity of accurate understanding and proper responding for emotions. Existing models for empathetic dialogue generation focus on the emotion flow in one direction, that is, from the context to response. We argue that conducting an empathetic conversation is a bidirectional process, where empathy occurs when the emotions of two interlocutors could converge on the same point, i.e., reaching an emotion consensus. Besides, we also find that the empathetic dialogue corpus is extremely limited, which further restricts the model performance. To address the above issues, we propose a dual-generative model, Dual-Emp, to simultaneously construct the emotion consensus and utilize some external unpaired data. Specifically, our model integrates a forward dialogue model, a backward dialogue model, and a discrete latent variable representing the emotion consensus into a unified architecture. Then, to alleviate the constraint of paired data, we extract unpaired emotional data from open-domain conversations and employ Dual-Emp to produce pseudo paired empathetic samples, which is more efficient and low-cost than the human annotation. Automatic and human evaluations demonstrate that our method outperforms competitive baselines in producing coherent and empathetic responses.
Recent advances in open-domain dialogue systems rely on the success of neural models that are trained on large-scale data. However, collecting large-scale dialogue data is usually time-consuming and labor-intensive. To address this data dilemma, we p
One challenge for dialogue agents is to recognize feelings of the conversation partner and respond accordingly. In this work, RoBERTa-GPT2 is proposed for empathetic dialogue generation, where the pre-trained auto-encoding RoBERTa is utilised as enco
Generating stylized responses is essential to build intelligent and engaging dialogue systems. However, this task is far from well-explored due to the difficulties of rendering a particular style in coherent responses, especially when the target styl
Understanding speakers feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response g
Existing emotion-aware conversational models usually focus on controlling the response contents to align with a specific emotion class, whereas empathy is the ability to understand and concern the feelings and experience of others. Hence, it is criti