ﻻ يوجد ملخص باللغة العربية
Despite the great promise of Transformers in many sequence modeling tasks (e.g., machine translation), their deterministic nature hinders them from generalizing to high entropy tasks such as dialogue response generation. Previous work proposes to capture the variability of dialogue responses with a recurrent neural network (RNN)-based conditional variational autoencoder (CVAE). However, the autoregressive computation of the RNN limits the training efficiency. Therefore, we propose the Variational Transformer (VT), a variational self-attentive feed-forward sequence model. The VT combines the parallelizability and global receptive field of the Transformer with the variational nature of the CVAE by incorporating stochastic latent variables into Transformers. We explore two types of the VT: 1) modeling the discourse-level diversity with a global latent variable; and 2) augmenting the Transformer decoder with a sequence of fine-grained latent variables. Then, the proposed models are evaluated on three conversational datasets with both automatic metric and human evaluation. The experimental results show that our models improve standard Transformers and other baselines in terms of diversity, semantic relevance, and human judgment.
Despite the tremendous success of neural dialogue models in recent years, it suffers a lack of relevance, diversity, and some times coherence in generated responses. Lately, transformer-based models, such as GPT-2, have revolutionized the landscape o
This paper proposes a new model, called condition-transforming variational autoencoder (CTVAE), to improve the performance of conversation response generation using conditional variational autoencoders (CVAEs). In conventional CVAEs , the prior distr
This paper presents an emotion-regularized conditional variational autoencoder (Emo-CVAE) model for generating emotional conversation responses. In conventional CVAE-based emotional response generation, emotion labels are simply used as additional co
The sequence-to-sequence (Seq2Seq) model generates target words iteratively given the previously observed words during decoding process, which results in the loss of the holistic semantics in the target response and the complete semantic relationship
In this paper, we investigate the diversity aspect of paraphrase generation. Prior deep learning models employ either decoding methods or add random input noise for varying outputs. We propose a simple method Diverse Paraphrase Generation (D-PAGE), w