ﻻ يوجد ملخص باللغة العربية
Motivated by questions related to the landscape of flux compactifications, we combine new and existing techniques into a systematic, streamlined approach for computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A central feature of our approach is the conjecturally resolution-independent intersection pairing of the vertical part of the integer middle cohomology of smooth elliptic CY fourfolds, relevant for computing chiral indices and related aspects of 4D F-theory flux vacua. We illustrate our approach by analyzing vertical flux backgrounds for F-theory models with simple, simply-laced gauge groups and generic matter content, as well as models with U(1) gauge factors. We explicitly analyze resolutions of these F-theory models in which the elliptic fiber is realized as a cubic in $mathbb P^2$ over an arbitrary (e.g., not necessarily toric) smooth base, and confirm the resolution-independence of the intersection pairing of the vertical part of the middle cohomology. In each model we study, we find that vertical flux backgrounds can produce nonzero multiplicities for all anomaly-free chiral matter field combinations, suggesting that F-theory geometry imposes no additional linear constraints beyond those implied by anomaly cancellation.
Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jump
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad
Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundle
We argue that global F-theory compactifications to four dimensions generally exhibit higher rank Yukawa matrices from multiple geometric contributions known as Yukawa points. The holomorphic couplings furthermore have large hierarchies for generic co
Hilbert-Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptio