ترغب بنشر مسار تعليمي؟ اضغط هنا

Chiral matter multiplicities and resolution-independent structure in 4D F-theory models

58   0   0.0 ( 0 )
 نشر من قبل Patrick Jefferson
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by questions related to the landscape of flux compactifications, we combine new and existing techniques into a systematic, streamlined approach for computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A central feature of our approach is the conjecturally resolution-independent intersection pairing of the vertical part of the integer middle cohomology of smooth elliptic CY fourfolds, relevant for computing chiral indices and related aspects of 4D F-theory flux vacua. We illustrate our approach by analyzing vertical flux backgrounds for F-theory models with simple, simply-laced gauge groups and generic matter content, as well as models with U(1) gauge factors. We explicitly analyze resolutions of these F-theory models in which the elliptic fiber is realized as a cubic in $mathbb P^2$ over an arbitrary (e.g., not necessarily toric) smooth base, and confirm the resolution-independence of the intersection pairing of the vertical part of the middle cohomology. In each model we study, we find that vertical flux backgrounds can produce nonzero multiplicities for all anomaly-free chiral matter field combinations, suggesting that F-theory geometry imposes no additional linear constraints beyond those implied by anomaly cancellation.



قيم البحث

اقرأ أيضاً

Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jump s of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in $dP_3$, for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill--Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.
111 - Shamit Kachru , Richard Nally , 2020
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad dress two natural follow-up questions, of both a physical and mathematical nature, that are surprisingly closely related. First, in passing from a complex manifold to a rational variety, as we must do to study modularity, we are implicitly choosing a rational model for the threefold; how do different choices of rational model affect our results? Second, the same modular forms are associated to elliptic curves over $mathbb{Q}$; are these elliptic curves found anywhere in the physical setup? By studying the F-theory uplift of the supersymmetric flux vacua found in the compactification of IIB string theory on (the mirror of) the Calabi-Yau hypersurface $X$ in $mathbb{P}(1,1,2,2,2)$, we find a one-parameter family of elliptic curves whose associated eigenforms exactly match those associated to $X$. Actually, we find two such families, corresponding to two different choices of rational models for the same family of Calabi-Yaus.
Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundle s and can be thought of as generalizations of spin bundles. We explain how these root bundles are linked to inequivalent F-theory gauge potentials of a $G_4$-flux. While this observation is interesting in its own right, it is particularly valuable for F-theory Standard Model constructions. In aiming for MSSMs, it is desired to argue for the absence of vector-like exotics. We work out the root bundle constraints on all matter curves in the largest class of currently-known F-theory Standard Model constructions without chiral exotics and gauge coupling unification. On each matter curve, we conduct a systematic bottom-analysis of all solutions to the root bundle constraints and all spin bundles. Thereby, we derive a lower bound for the number of combinations of root bundles and spin bundles whose cohomologies satisfy the physical demand of absence of vector-like pairs. On a technical level, this systematic study is achieved by a well-known diagrammatic description of root bundles on nodal curves. We extend this description by a counting procedure, which determines the cohomologies of so-called limit root bundles on full blow-ups of nodal curves. By use of deformation theory, these results constrain the vector-like spectra on the smooth matter curves in the actual F-theory geometry.
We argue that global F-theory compactifications to four dimensions generally exhibit higher rank Yukawa matrices from multiple geometric contributions known as Yukawa points. The holomorphic couplings furthermore have large hierarchies for generic co mplex structure moduli. Unlike local considerations, the compact setup realizes these features all through geometry, and requires no instanton corrections. As an example, we consider a concrete toy model with $SU(5) times U(1)$ gauge symmetry. From the geometry, we find two Yukawa points for the ${bf 10}_{-2} , bar{bf 5}_6 , bar{bf 5}_{-4}$ coupling, producing a rank two Yukawa matrix. Our methods allow us to track all complex structure dependencies of the holomorphic couplings and study the ratio numerically. This reveals hierarchies of ${cal O}(10^5)$ and larger on a full-dimensional subspace of the moduli space.
Hilbert-Kunz multiplicity and F-signature are numerical invariants of commutative rings in positive characteristic that measure severity of singularities: for a regular ring both invariants are equal to one and the converse holds under mild assumptio ns. A natural question is for what singular rings these invariants are closest to one. For Hilbert--Kunz multiplicity this question was first considered by the last two authors and attracted significant attention. In this paper, we study this question, i.e., an upper bound, for F-signature and revisit lower bounds on Hilbert--Kunz multiplicity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا