ﻻ يوجد ملخص باللغة العربية
Motivated by engineering vector-like (Higgs) pairs in the spectrum of 4d F-theory compactifications, we combine machine learning and algebraic geometry techniques to analyze line bundle cohomologies on families of holomorphic curves. To quantify jumps of these cohomologies, we first generate 1.8 million pairs of line bundles and curves embedded in $dP_3$, for which we compute the cohomologies. A white-box machine learning approach trained on this data provides intuition for jumps due to curve splittings, which we use to construct additional vector-like Higgs-pairs in an F-Theory toy model. We also find that, in order to explain quantitatively the full dataset, further tools from algebraic geometry, in particular Brill--Noether theory, are required. Using these ingredients, we introduce a diagrammatic way to express cohomology jumps across the parameter space of each family of matter curves, which reflects a stratification of the F-theory complex structure moduli space in terms of the vector-like spectrum. Furthermore, these insights provide an algorithmically efficient way to estimate the possible cohomology dimensions across the entire parameter space.
Motivated by the appearance of fractional powers of line bundles in studies of vector-like spectra in 4d F-theory compactifications, we analyze the structure and origin of these bundles. Fractional powers of line bundles are also known as root bundle
Motivated by questions related to the landscape of flux compactifications, we combine new and existing techniques into a systematic, streamlined approach for computing vertical fluxes and chiral matter multiplicities in 4D F-theory models. A central
We consider resolutions of codimension-two enhanced singularities from $SO(12)$ to $E_7$ and from $E_7$ to $E_8$ in six-dimensional F-theory, where a half-hypermultiplet arises for generic complex structures achieving them. The exceptional fibers at
In recent work, we conjectured that Calabi-Yau threefolds defined over $mathbb{Q}$ and admitting a supersymmetric flux compactification are modular, and associated to (the Tate twists of) weight-two cuspidal Hecke eigenforms. In this work, we will ad
We describe how simple machine learning methods successfully predict geometric properties from Hilbert series (HS). Regressors predict embedding weights in projective space to ${sim}1$ mean absolute error, whilst classifiers predict dimension and Gor